
Rimage Rapid API Programming
Guide

For Rimage Software Development Kit 8.1

For more information visit rimage.com/support110899_A

Corporate Headquarters:
Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
800-553-8312 (toll free US)

Service: +1 952-946-0004 (Asia/Pacific, Mexico/Latin
America)

Fax: +1 952-944-6956
European Headquarters:
Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach
Germany

Tel: +49-(0) 6074-8521-0
Fax: +49-(0) 6074-8521-100

Rimage Corporation reserves the right to make
improvements to the equipment and software
described in this document at any time without any
prior notice. Rimage Corporation reserves the right
to revise this publication and to make changes from
time to time in the content hereof without obligation
of Rimage Corporation to notify any person or
organization of such revisions or changes.
This document may contain links to web sites that
were current at the time of publication, but may have
moved or become inactive since. This document may
contain links to sites on the Internet that are owned
and operated by third parties. Rimage Corporation
is not responsible for the content of any such third-
party site.
©2011, Rimage Corporation
Rimage® is a registered trademark of the Rimage
Corporation. Rimage SDK™ is a trademark of the
Rimage Corporation. Dell™ is trademark of Dell
Computer Corporation. FireWire™ is a trademark of
Apple Computer, Inc.
All other trademarks and registered trademarks are
the property of their respective owners.

http://rimage.com/support

For more information visit rimage.com/support110899_A

Contents
Important Information .. 1

Support Information ..1
Learn More Online ...1
Technical Support ...1
Optical Disc Recording Software Disclaimer ..2

Introduction .. 3
Rapid API Features ...3
Get Started ..3

Work with the API ... 5
Work with Sessions ..5

Client Session ... 5

SingleConnectionSession.. 6

Connection .. 6

Work with Listeners ...6
Listener Callback Options ... 7

Work with Jobs ..7
Create a Job ... 8

Set Job Data ... 9

Jobs Spanning Multiple Discs ... 9

Set Job Parameters .. 9
Job Parameter Defaults ... 10

Submit a Job .. 10

Durable Jobs .. 10

Monitor Jobs ... 11

Recover Durable Jobs ... 11

Work with Parameters ... 12
Work with Servers .. 13

Work with Server Alerts ... 14

Work with Server Orders .. 14

Memory Management ... 15
Enumerate Objects ... 15
Exception Handling .. 16

Customize the API ... 17
Extend Job Classes ... 17

Job Factory... 18

Generate Custom Job XML ... 20
Customize ImageOrder XML ... 21

Customize ProductionOrder XML ... 22

XML Writer Factory .. 22

Modifying XML Directly.. 24

Generate Custom Server Request XML ... 24

Samples ... 27

http://rimage.com/support

For more information visit rimage.com/support110899_A

Deployment .. 29
C++ Deployment .. 29

Build Information .. 29

Required Files and Folders ... 29
Required DLL Files (Non-Unicode) ... 29

Required DLL Files (Unicode) ... 29

Required LIB Files (Non-Unicode. Does not apply to .NET deployment.) .. 29

Required LIB Files (Unicode. Does not apply to .NET deployment.) .. 30

Required Include Directory (Does not apply to .NET deployment.) .. 30

Required #include Statement (Does not apply to .NET deployment.)... 30

Optional Files .. 30

.NET Deployment .. 30
Build Information ... 30

Required Files and Folders ... 30

Required .NET Assembly Files .. 30

64 Bit Deployment ... 30

Appendix A ... 31
Client ID and Job ID Uniquenss Rules .. 31

Appendix B ... 33
Reference Documentation .. 33

http://rimage.com/support

For more information visit rimage.com/support110899_C 1

Important Information
Support Information
US, Asia/Pacific, Mexico/Latin America Europe
Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
Attn: Rimage Services

Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach Germany

Contact Rimage Services:
Website: www.rimage.com/support
KnowledgeBase: http://rimage.custhelp.com
Log in and select the Ask a Question tab
Telephone:
North America: 800-553-8312
Asia/Pacific, Mexico/Latin America: 952-946-0004
Fax: 952-946-6956

Contact Rimage Services Europe:
Website: www.rimage.de
Email: support@rimage.de
Telephone: +49-(0) 1805-7462-43
Fax: +49-(0) 6074-8521-101

When you contact Rimage Services, please provide:
• System serial number and software version

• Functional and technical description of the problem

• Exact error message received

My Rimage Product Information:
Copy this information from your Rimage product for future reference.

Note: Make sure you update the Serial Number here anytime you
receive a replacement system.

Serial Number:

Product Name:

Date of Purchase:

Learn More Online
At www.rimage.com/support, you can experience Rimage’s world-class Support and Services.

From the Support home page:
1. Select your product series.
2. Select your product.
3. Learn more on the product page.

From your product page you can access:
• Information about the latest software and firmware updates

• Product specifications

• The latest documents

• Current firmware and driver downloads

Technical Support
Support for the Rimage Professional is available through your authorized reseller.

Important! Make sure that you register your Professional so Rimage can notify you of upgrades as they become
available. Registration is available at http://www.rimage.com/support/warranty-registration.

http://rimage.com/support
http://www.rimage.com/support
http://rimage.custhelp.com
http://www.rimage.de
support@rimage.de
www.rimage.com/support
http://www.rimage.com/support/warranty-registration

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C2

Optical Disc Recording Software Disclaimer
This Product, Software, or Documentation may be designed to assist you in reproducing material in which you own
the copyright or have obtained permission to copy from the copyright owner. Unless you own the copyright or have
permission to copy from the copyright owner, you may be violating copyright law and be subject to payment of
damages and other remedies. If you are uncertain about your rights, you should contact your legal advisor. If you are
neither in possession of the copyright nor have authorization from the owner of the copyright, unauthorized copying of
copyrighted material on an optical disc or any other media violates national and international legislation and can result in
severe penalties.

http://rimage.com/support

110899_C 3

Introduction

For more information visit rimage.com/support

Introduction
Rimage has developed a new interface for programmers to integrate their software with the Rimage system quickly and
easily. This interface is called the Rapid API, referred to in this document as Rapid API or simply the API.

 • The Rapid API is included on the Rimage Software Development Kit (SDK) disc.
 • The Rapid API is supported on Windows platforms only.
 • The Rapid API supports C++ and all .NET languages.
 • This document includes information about the Rapid API, which requires Rimage Software Suite version 8.0 or above.

Rapid API Features
 • The Rapid API eliminates the need for XML creation and parsing - an object oriented interface is presented.
 • The Rapid API presents a job level interface encapsulating imaging and production orders – eliminating the need to

administer order management details.
 • The Rapid API offers the ability to set up either a single or multiple job listeners.
 • The Rapid API offers the ability to set up connection listener and server listeners, called session listener.
 • The Rapid API can make calls back to the application on the application’s main user interface or UI thread or some

other UI thread – eliminating problems with updating UI components from a non-UI thread.

Note: .NET 2.0 generates an exception if a UI component is being updated on a non-UI thread.

 • The Rapid API offers the ability to extend Job classes to implement functionality not provided by default.
 • The Rapid API also offers the ability to customize Job XML to implement functionality not provided by default.

Get Started
Note: Before you install the Rapid API, Producer Software Suite 8.1 or later must be installed on the PC connected to the
Rimage autoloader (the Control Center).

1. Install the Software Development Kit.
2. Open sample project(s) and run sample program(s) to familiarize yourself with the Rapid API and the programming

environment. Sample programs are located in C:\Program Files\RimageSDK\ApiSdk\Samples\RapidApi by default.
Select the appropriate project type and open the project in Visual Studio 2005. Refer to Samples on page 27 for
more information

3. Create a program to publish your first disc by implementing the following:

Note: These steps are shown in the “Hello World” samples.

a. Set up a session listener – this is an optional step.
SingleConnectionSession.GetInstance().SetSessionStatusListener()

b. Set up a default job listener – this is an optional step.
SingleConnectionSession.GetInstance().SetDefaultJobListener()

c. Establish a connection to a Messaging Server.
SingleConnectionSession.GetInstance().Connect()

d. Create a Job.
Job job = SingleConnectionSession.GetInstance().CreateImageAndRecordJob()

e. Set Job parameters.
job.AddParentFolder()
job.SetLabelFile()

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C4

f. Submit a Job.
SingleConnectionSession.GetInstance().SubmitJob()

g. Receive Job statuses if listeners were set up.
IJobStatusListener.OnJobStatus() // callback

h. Disconnect from the messaging server.
SingleConnectionSession.GetInstance().Disconnect()

http://rimage.com/support

110899_C 5

Work with the API

For more information visit rimage.com/support

Work with the API
This Programming Guide gives an overview of the classes in the Rapid API. For much more detailed information access
the HTML help files located by default, in C:\Program Files\RimageSDK\ApiSdk\doc.
The diagram below shows the major classes that are part of the Rapid API interface.
Begin working with the API by creating a Rimage session (SingleConnectionSession class), which encapsulates a
connection to the Rimage Messaging server with your application. A connection is represented by the Connection class.
Refer to Work with Sessions on page 5 for more information.

Note: A connection to Messaging Server is needed in order to process jobs, manage servers, and receive system
notifications.

Set up Job and Session listeners for your application to be asynchronously notified of job statuses, server
alerts, etc. These listeners can be set up before a connection is established. An application can implement
the ISessionStatusListener interface, IJobStatusListener interface, or both and pass the objects to the
SingleConnectionSession class. Refer to Work with Listeners on page 6.

Note: An application is not required to set up listeners.

Job class hierarchy represents the heart of the Rapid API. A Job class encapsulates the details of submitting, processing,
and receiving job statuses through the JobStatus class. The caller creates an appropriate type of job, sets data paths and
parameters, and submits the job. Refer to Work with Jobs on page 7.

Note: It is possible to create a job object and set job object parameters without establishing a connection to the Rimage
Messaging server. A Messaging server connection must exist in order for an application to submit a job.

Rapid API maintains objects representing Rimage servers that are available for processing jobs. Servers can be accessed
through the SingleConnectionSession or Connection classes. Servers allow server settings to be changed and read,
server state changes, and iterating through current alerts. Refer to Work with Servers on page 12.

Note: An application is not required to work with servers.

Work with Sessions
To begin working with the Rapid API, initiate a client session with the Rimage system. A session object is created and the
application maintains a reference to only one session object. Through the session object, the application can manage
jobs (create, submit, retrieve, etc.), connections, servers and server alerts, and set listeners.

Client Session
The ClientSession class is the base class for all sessions. This class is never instantiated directly. It exposes methods that
are common to all types of sessions, such as job creation, enumerating over jobs, servers, and alerts, and setting job and
session listeners.
Session type specific methods, such as submitting a job for processing, are exposed by ClientSession subclasses. A
subclass’ GetInstance() static method is called to get an instance of a session - this is the starting point of working with
the Rapid API.

Note: Currently Rapid API offers only one ClientSession subclass – SingleConnectionSession.

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C6

SingleConnectionSession
SingleConnectionSession is currently the only subclass of ClientSession. The Rapid API supports a connection to only
one messaging server at any one time. The client application is free to connect and disconnect from any number of
messaging servers on the network, but it can be connected to only one at a time.
To get an instance of a single connection session, use the static method SingleConnectionSession.GetInstance().
Rimage recommends the client application always accesses ClientSession and SingleConnectionSession through
SingleConnectionSession.GetInstance() method. For example:

 • C++: SingleConnectionSession::GetInstance()->Connect()
 • C#: SingleConnectionSession.GetInstance().Connect()

Note: SingleConnectionSession class inherits all the ClientSession methods which eliminates the need to hold onto a
reference to ClientSession class.

Connection
Connection class encapsulates information about a connection to the messaging server and allows operations that are
specific to this connection such as enumerating servers connected to the same messaging server or submitting a job to
those servers. The Connection class also offers information methods about the connection itself, such as messaging host
and port currently connected to, client ID, and Rimage system folder.

Note: A Connection object is automatically created when ConnectionSession.Connect() method is called.

Work with Listeners
The client application can asynchronously receive two types of events, job status events and session events. Job status
events notify the application about the progress of a specific job. Session events include server alerts, connection drops,
and server state changes.
1. The client application implements the listener interfaces.

class SampleUserJobListener : IJobStatusListener { }
class SampleUserSessionListener : ISessionStatusListener { }

2. And gives the listener object references to the Rapid API.
SingleConnectionSession.SetDefaultJobListener()
SingleConnectionSession.SetSessionStatusListener()

3. Statuses are asynchronously delivered to the application through the listener objects when they arrive.

4. An application can remove the listeners at any time.
SingleConnectionSession.RemoveDefaultJobListener()
SingleConnectionSession.RemoveSessionStatusListener()

Note: An application can also set up job status listeners on individual job objects. If the default listener and a specific job
listener are set, then all statuses for that job are received twice by the application – once by the default listener and once
by the job specific listener.

Important! Client application methods that implement the ISessionStatusListener and IJobStatusListener interfaces
should not throw exceptions back to the API. If an exception is thrown, it is logged and the API continues to process
without notifying the user.

http://rimage.com/support

110899_C 7

Work with the API

For more information visit rimage.com/support

Listener Callback Options
Listener objects are called by the Rapid API on a thread. The client application has control over which thread is used
when i ts listener objects are called by the API. The application specifies its intention when it sets up the listener. A
listener can be called back on one of three different threads:

 • Application’s main UI thread – this is the most common option for UI applications. This eliminates a potential issue
with updating UI components from a non-UI thread. Also, most UI applications have only one UI thread – the main
application thread. To be called back on the main UI thread, setup the listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackOnMainUIThread.True)

 • An application’s UI worker thread – in some cases an application creates a UI worker thread. The Rapid API needs the
UI worker thread’s ID and calls the listener back on this thread. To be called back on a UI worker thread, setup the
listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackUIThreadId)

 • Rapid API thread – in cases when there is no UI thread, or the application does not update a UI component with
status information, it may be more advantageous to receive listener events on a worker thread. This is recommended
for console applications. To be called back on the Rapid API’s thread, setup the listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackOnMainUIThread.False)

Work with Jobs
The main purpose of the Rimage publishing system is to record discs with data and print labels on those discs. This
process is facilitated by the Imaging and Production servers. Sometimes other applications are required, such as imaging
data to an image file to be recorded on a disc at a later time, or printing a label on a previously recorded disc. Rapid API
accommodates all of these scenarios by providing three basic types of Job classes.

 • ImageAndRecordJob is the most common type of job that images and records data and optionally prints a label. This
type of job utilizes both Imaging and Production servers.

 • ImageOnlyJob is the job type that creates an image file to be recorded on a disc at a later time. This type of job
utilizes only the Imaging server.

 • ProductionOnlyJob this type of job exists for recording an existing image file on disc, printing a label on an existing
disc, or to make an audio CD which requires no prior imaging. This type of job utilizes only the Production server.

The Job class hierarchy can be divided into three levels:
1. First level consists of the Job base class from which all job classes inherit. This class exposes methods common to all

types of jobs, such as job ID and common parameters.
2. Second level consists of ImageAndRecordJob, ImageOnlyJob, ProductionOnlyJob – these classes encapsulate the

types of Rimage jobs discussed above. This level of classes expose all methods necessary for a job type. These classes
implement the IImageOptions interface, the IProductionOptions interface, or both interfaces.

3. Third level consists of specific job type classes which represent the most common types of Rimage jobs. These job
classes have default parameter values to match their specific types. Refer to the Job Parameter Defaults table on
page 10 for more information. For example, the default media type for a UDFJob is DVDR, but the default media

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C8

type for an ISOJob is CDR.

The above diagram also shows two key interfaces: IImageOptions and IProductionOptions. These interfaces specify the
contract for jobs that are processed by Imaging server, Production server, or both.
IImageOptions interface exposes methods for specifying data to be imaged as well as settings which control how that
data is to be imaged, for example, ISO Level 2 or UDF Version 1.02.
IProductionOptions interface contains methods that allow specification of information such as the label file and the list
of audio or data tracks, to record on the disc. It also allows specification of production settings such as media type and
number of copies.
Second level classes that implement the IImageOptions interface are ImageAndRecordJob and ImageOnlyJob because
both of these job types involve the imaging of data.
Second level classes that implement the IProductionOptions interface are ImageAndRecordJob and ProductionOnlyJob
because both of these job types use Production server to record a disc.

Create a Job
Job objects can be created from job classes of the second and third levels. The first level Job base class is declared
abstract.
To create a specific type of job, use one of the following methods:

ImageAndRecordJob ClientSession.CreateImageAndRecordJob(JobType)
ImageOnlyJob ClientSession.CreateImageOnlyJob(JobType)
ProductionOnlyJob ClientSession.CreateProductionOnlyJob(JobType)

The JobType parameter tells the API which job to create. If the JobType parameter is specified as a third level type, such
as UDFJobType, then the caller is required to cast the returned reference to the correct type. For example:
C++

UDFJob* job = (UDFJob*)SingleConnectionSession::GetInstance()->
CreateImageAndRecordJob(UDFJobType)

C#
UDFJob job = (UDFJob)SingleConnectionSession.GetInstance().

http://rimage.com/support

110899_C 9

Work with the API

For more information visit rimage.com/support

CreateImageAndRecordJob(JobType.UDFJobType)

Set Job Data
After a job is created, setup the data and change any related settings. Communicate to the Rimage system which data to
record on the disc. For ImageAndRecordJob and ImageOnlyJob this is accomplished with the AddParentFolder() method.
An Editlist is specified by calling the AddEditList() method. Multiple parent folders and Editlists can be given to a job.
For a ProductionOnlyJob an image file must be specified with the AddDataTrack() method. Multiple data tracks can be
recorded on a disc. For an audio job, AddAudioTrack() can be called multiple times.
The SetLabelFile() method is available on ImageAndRecordJob and ProductionOnlyJob to communicate to the API which
label to print on the disc.
When a file is given to the API, (e.g. AddParentFolder()) a second parameter of type ConvertToUNC enum is passed in.
This parameter tells the API whether or not to convert the file path to a UNC path so it is accessible from the network.
For example:
If C:\Rimage is the parent folder path, this folder is shared as Rimage, and the second parameter is ConvertToUNC.True,
then the path \\<computername>\Rimage is given to the server. This is useful when the Rimage servers are running on
other computers on the network.
Some data, such as a parent folder or label file, have parameters that are specific to the data. Set and Get methods exist
which take the original path given to the API as the first parameter and a key/value pair for the rest. For example:

void SetLabelFileParam(String labelFile, LabelFileParamType key, String value)

String GetLabelFileParam(String labelFile, LabelFileParamType key)

Refer to Work with Parameters on page 12.

Jobs Spanning Multiple Discs
If the data specified for an ImageAndRecordJob is too large for the specified media - more than 750MB for CDR, or more
than 4.3GB for DVDR, etc. - Rimage Imaging and Production servers can produce multiple discs for that job, spanning the
data across the discs.
To allow the Rimage system to span discs for a job, set the AllowSpanning property to true. By default this property is
false.
C++

void ImageAndRecordJob::AllowSpanning(bool value)
 bool ImageAndRecordJob::IsSpanning()

C#
ImageAndRecordJob.AllowSpanning { bool get(); void set(bool) }

Set Job Parameters
The remaining job settings are divided into three categories:
• Common job settings are managed with SetJobParam() and GetJobParam(). These settings encompass parameters that

are common to all job types.
• Imaging job settings are managed with SetImageParam() and GetImageParam(). These methods are specified by the

IImageOptions interface and are implemented by the ImageAndRecordJob and ImageOnlyJob classes.
• Production job settings are managed with SetProductionParam() and GetProductionParam(). These methods are specified by

the IProductionOptions interface and are implemented by the ImageAndRecordJob and ProductionOnlyJob classes.
Refer to Work with Parameters on page 12.

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C10

Job Parameter Defaults
When a third level job class is created, parameters are set to the most reasonable default values for the created job type.
The following table lists the default settings for all the third level jobs.

ImageAndRecordJob Defaults
ISOJob Image format = ISO Level 2, Media type = CDR
UDFJob Image format = UDF Version 1.02, Media type = DVDR

HybridJob Image format = ISO Level 2, HFS, Media type = CDR

BlueBookJob Image format = ISO Level 2, Media type = CDR

HFSJob Image format = HFS, Media type = CDR
ImageOnlyJob Defaults
ISOImageOnlyJob Image format = ISO Level 2

UDFImageOnlyJob Image format = UDF Version 1.02

HybridImageOnlyJob Image format = ISO Level 2, HFS

HFSImageOnlyJob Image format = HFS

ProductionOnlyJob Defaults
AudioJob Media type = CDR

LabelOnlyJob Media type = CDR

BlueBookFromImageJob Media type = CDR

FromImageJob Media type = CDR

Submit a Job
To submit a job for processing, the application simply calls

void SingleConnectionSession.SubmitJob(Job)

The Rapid API validates parameters set on the job for correctness before it sends the job out to the servers for
processing. Validation includes:
1. Checking for incorrect parameter values.
2. Checking for incompatible parameter combinations. For example ISO and UDF format settings cannot coexist in a

single job – it’s either a UDF job or an ISO job.

Durable Jobs
To submit a job so its status can be recovered after a crash use

 • C++: SingleConnectionSession::SubmitDurableJob(Job)
 • .NET: SingleConnectionSession.SubmitDurableJob(Job)

This ensures that the client application using the Rapid API never loses job statuses, even in case of a crash or network
disconnect.
Refer to the Recover Durable Jobs section on page 11 for more information.

http://rimage.com/support

110899_C 11

Work with the API

For more information visit rimage.com/support

Monitor Jobs
Each Job object holds onto a JobStatus object which represents the current status of the job at all times, even before a
job is submitted. To access the JobStatus object call
C++

JobStatus Job.GetStatus()
To access the current state of the job call
C++

JobStateType JobStatus.GetState()
.NET

Job.Status
JobStatus.State

A job is in one of the following states at any one time
JobNotStarted
JobSubmittedForImaging
JobSubmittedForProduction
JobInProcess
JobCompleted
JobCancelled
JobFailed

JobStatus contains other information such as percent completed, error code and error message in case of failure, IDs of
the servers processing the job, etc. The application is free to access the JobStatus object for a job at any time.
Another way to monitor job progress is to set up job listeners. If a listener is set up, a default listener or a job specific
listener, the application is notified asynchronously with a callback to the IJobStatusListener.OnStatus() method every time
the status changes. The job ID and a reference to the JobStatus object for that job are passed into the callback method.

Important: The application should not hold onto a Job Status reference passed into the callback. It should retrieve the
JobStatus reference from the Job object every time.

Notes:
• It is much more efficient to be notified through a listener versus polling for job status proactively.

• Finished jobs can be removed from the Rapid API’s cache by calling ClientSession.RemoveFinishedJobs().

Recover Durable Jobs
In case of an application crash or shutdown, or a network problem during job processing the flow of current job statuses
is interrupted. To recover missed job statuses, the application needs to call:
C++:

SingleConnectionSession::RecoverDurableJobs()Connection::ReoverDurableJobs()
NET:

SingleConnectionSession.RecoverDurableJobs()Connection.RecoverDurableJobs()
at next startup or reconnect to the Rimage system.

This sends stored job statuses to the client application. Rapid API internally creates all the recovered Job and JobStatus
objects. If the client application sets up a default JobStatusListener before calling RecoverDurableJobs() then recovered
job statuses are sent to the listener.

Session class method RecoverDurableJobs() recovers all durable jobs, not only the jobs for the Connection that was
just made to Rimage. Connection class method RecoverDurableJobs() only recovers durable jobs that were submitted
previously by this Connection.

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C12

Work with Parameters
Throughout the Rapid API one encounters methods of this pattern

void SetSomethingParam(EnumType key,String value)
String GetSomethingParam(EnumType key)

The API groups similar parameters for Job or Server classes, into categories. Ea ch category is represented by setter
and getter methods as well as by an enumerated type. The enumerated type encapsulates the possible parameters for
the category. For example the IImageOptions interface has the following methods using the ImagingTargetParamType
enumerated type.

void SetImageParam(ImagingTargetParamType key, String param)
String GetImageParam(ImagingTargetParamType key)
enum ImagingTargetParamType {
TargetImagingClusterParam
TargetImagingServerParam
LastImagingTargetParamType };

Note: Every enumerated type ends with a delimiter value in the pattern: “Last<enumname>ParamType” –
LastImagingTargetParamType in the above example. This enumerated value isfor internal use only.

The value of the parameter, whether set or retrieved, is always represented by a string type (LPCTSTR in C++ and System.
String in .NET). Some parameter values are just text, such as the ImagingTargetParamType.TargetImagingServerParam
which requires the ID of a server.
Other parameters only accept values in a specific set, such as FormatParamType.ISOLevelParam which only accepts
none, 1, or 2. Constants exist for all predefined values. For this example they are:
C++

FORMAT_ISO_NONE
FORMAT_ISO_9660_L1
FORMAT_ISO_9660_L2

.NET
JobParamValues.FormatISONone
JobParamValues.FormatISO_9660_L1
JobParamValues.FormatISO_9660_L2

Other parameters only accept true or false, such as FormatOptionParamType.ForceUpperCaseParam. Predefined
constants exist for these values as well:
C++

RAPID_TRUE
RAPID_FALSE

.NET
ParamValues.True
ParamValues.False

Rapid API validates parameter values as soon as possible. If a parameter value for a specific parameter doesn’t match the
allowed set of values, an exception is thrown to the application. This pattern of setting and getting parameters allows the
Rapid API to keep the number of class methods small.

Note: For a detailed explanation of all enumerated types and appropriate values, access the HTML help files located, by
default, in C:\Program Files\RimageSDK\ApiSdk\doc.

http://rimage.com/support

110899_C 13

Work with the API

For more information visit rimage.com/support

Work with Servers
When the client application connects to a messaging server, the Rapid API starts collecting information about Rimage
servers on behalf of the application. Server objects are never instantiated by the client application, instead they are
created by the API when a specific server is detected online. The server objects represent either the Imaging or the
Production servers available on the network. The application is notified of server state change events if a session status
listener is set up.
The Server classes expose server related interfaces available to the client application. The application can pause and
resume a server, retrieve server information, change server settings, and much more.
Server objects can be enumerated by initializing an iterator with either ClientSession or Connection objects. Refer to
Enumerate Objects on page 15.
Server objects also keep track of alerts currently active on a Rimage server. Alerts represent warning and error
conditions, such as out of discs, recording failure, etc. Refer to Work with Server Alerts on page 14.
An application can also query a server for a list of orders currently in process on that server. Refer to Work with Server
Orders on page 14.

Server is a base class for two concrete server types – ImagingServer and ProductionServer. The subclasses inherit all the
Server methods as well as offering specific methods for each server type.
• ProductionServer class extends the Server class and adds functionality specific to the Production server. It allows

the caller to get information about disc input and output bins, recorders, printers, and to change Production specific
settings.

• ImagingServer class extends the Server class and adds functionality specific to the Imaging Server, such as retrieving
Imaging server specific information.Refer to Work with Parameters on page 12.

Note: Offline servers can be removed from the Rapid API’s cache by calling ClientSession.RemoveOfflineServers() or
Connection.RemoveOfflineServers().

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C14

Work with Server Alerts
A server alert represents a warning or an error condition encountered by a server. Most of the alerts require a user
action, such as putting more discs in the input bin of an autoloader. Some alerts can be answered programmatically.
A ServerAlert object is attached to a Server object by the API when it is generated by a Rimage server. The application is
notified of a new or acknowledged alert if a session status listener is set up.
ServerAlert objects can be enumerated by initializing an iterator with either a ClientSession or a Server object. Refer to
Enumerate Objects on page 15.
The typical application handles alerts in the following way:
1. A server sends out an alert.
2. The client application receives notification of the alert in SessionStatusListener.OnServerAlert() callback method.
3. The client application displays the alert in a dialog. The dialog shows buttons with corresponding strings received

from ServerAlert.GetNumReplies() and ServerAlert.GetReplyText() methods.
4. An operator resolves the alert condition (places more blank discs in the input bin for example).
5. The operator clicks on one of the buttons which triggers a call to reply to one of the server’s alerts. There are three

methods to choose from to reply to a ServerAlert:
 • ReplyWithActionId() is the preferred method. This allows the caller to pass in a unique action ID for that specific

reply. For a finite set of action IDs in the Rimage system, refer to Server Alert Action IDs located at C:\Program Files\
RimageSdk\Manuals\Programming Guides\ Server Alert Action IDs Reference.pdf. An Action ID can be retrieved
from an alert by calling GetReplyActionId(int index).

 • ReplyWithText() method allows the caller to pass in the same string as the one displayed on the button. The text
string can be retrieved from an alert by calling GetReplyText(int index).

 • ReplyWithIndex() method allows the caller to pass in the index of the reply, starting with index 0.
6. The server receives the reply, checks that the condition has been fixed, and sends out an alert acknowledgement.
7. Rapid API updates the status of the ServerAlert object.
8. The client application receives the alert acknowledgement through the SessionStatusListener. OnServerAlert()

method with AlertAcknowledged value.

Note: Acknowledged alerts can be removed from the Rapid API’s cache by calling Server.
RemoveAcknowledgedAlerts() or ClientSession.RemoveAcknowledgedServerAlerts().

Work with Server Orders
Server classes allow you to work with any orders that are currently active on a certain server. These orders are submitted
by a client application on the network, this may include orders submitted by client applications other than your own.
Orders are represented by ServerOrder base class and ImagingOrder and ProductionOrder subclasses.
Server orders are attached to a Server object by the API after an application makes a call to Server.RefreshInfo(ServerInfo
RefreshType.RefreshActiveOrders) method. Information that a client application retrieves from server orders is similar to
the information obtained from a JobStatus object, such as ID, percent completed, copies completed, etc. ServerOrder
objects can be enumerated by initializing an iterator with a Server object. You can also retrieve a list of orders that are
pending to be processed. To do this call
C++:

Connection::InitPendingOrderIterator()
NET:

Connection.GetPendingOrders()
This call allows you to retrieve pending orders on a combination of specific connection and cluster. The rest of the
parameters let you filter the list even further. You can specify a combination of the following filters:

 • clientId - limit the list to orders authored by a specific client application
 • serverId - limit the list to orders targetted to a specific server

http://rimage.com/support

110899_C 15

Work with the API

For more information visit rimage.com/support

 • maxOrders - limit the number of orders in the returned list
 • targetedOrdersOnly - specifies if the returned orders are only ones targeted to a specific server or not targeted at all.

You can also call
C++:

Server::InitPendingOrderIterator()
.NET:

Server.GetPendingOrders()
to limit the list to orders targeted to the server object you’re using. The parameters for this method have the same
meanings as the parameters above.

Memory Management
The caller never uses the new operator to create instances of any of the Rapid API’s classes. To create a Job object call
ClientSession.CreateJob(). A JobStatus object is created by the Job class, Server and ServerAlert objects are instantiated
by the API, etc.
The application almost never calls the delete operator on the API objects because Remove*() methods exist on various
classes. Examples include ClientSession.RemoveAcknowledgedServerAlerts() and ClientSession.RemoveFinishedJobs().
It is also possible to delete a specific finished job by calling ClientSession.RemoveJob().
When an application disconnects from the Messaging Server, the Server and ServerAlert objects are removed. Job
objects are not removed. The reason Job objects are not removed is that the same Job object can be processed on one
messaging connection and then submitted for processing on a new connection if the application disconnects from the
first connection and then connects to a different Messaging Server.

Enumerate Objects
Rapid API instantiates objects on the caller’s behalf and maintains lists of those objects internally. The API offers a way
for the client application to retrieve references to those objects, such as a Job or Server object.
Methods exist on various classes to retrieve an object by its ID. Examples include Connection.GetServer() and
Server.GetAlert(). If the caller knows the ID of a certain object, such as an Alert ID or a Server ID, this is the fastest way to
retrieve an object.
If however an application needs to list all objects of a certain type, such as Jobs or ServerAlerts for a specific Server, then
it can use various classes to initialize an iterator and enumerate over the whole list.

Note: The term Enumerator is used to match .NET terminology.

In C++, the caller initializes an Iterator of a specific type by using one of the Init*Iterator() methods on the classes that
offer iterator functionality, such as ClientSession. Once an Iterator object has been initialized, the application can list all
of the objects by calling Iterator.Next() in a loop. In C#, or any other .NET language, the call to a Get*s() method is made,
such as ClientSession.GetServers(). This methods returns an object which implements the IEnumerable<T> interface.
This enables the use of the C# ‘foreach’ construct (‘For Each’ in Visual Basic). The enumerator can be obtained as well by
calling IEnumerable<T>.GetEnumerator() method.

Note: An initialized Iterator is like a snapshot in time. For example, if a new Server object is created by the API while the
caller is enumerating Server objects, the new object is not retrieved by the Iterator.

Important! Calling one of the Remove*() methods to delete objects on one thread while enumerating the objects being
removed on another thread can result in a null pointer or a null reference exception.

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C16

Example: Enumerate over Job Objects
C++:

JobIterator iter;
SingleConnectionSession::GetInstance()->InitJobIterator(iter);
while (iter.HasMore())
{
 Job job = iter->Next();
}

C#:
foreach(Job job in SingleConnectionSession.GetInstance().GetJobEnumerator())
)
{
 // Work with the job object
 string jobId = job.JobId;

Exception Handling
Most Rapid API methods throw an exception in case of an error, whether it’s a connection related error or a parameter
validation error. The type of the exception thrown is always RimageException. It is recommended that calls to the API
methods are always wrapped in a try catch block as shown in this example:
C++

try
{
 SingleConnectionSession::GetInstance()->Connect(
 “client1”, “localhost”, “2506”);
}
catch (RimageException &re)
{
 // Rapid API error occurred
 LPCTSTR error = re.GetErrorMessage();
 int errorCode = re.GetErrorCode();
}
catch (. . .)
{
 // anything else
}

C#
try
{
 SingleConnectionSession.GetInstance().Connect(
 “client1”, “localhost”, “2506”);
}
catch (RimageException re)
{
 // Rapid API error occurred
 string error = re.Message;
 int errorCode = re.ErrorCode;
}
 catch (Exception se)
{
 // anything else
}

http://rimage.com/support

110899_C 17

Customize the API

For more information visit rimage.com/support

Customize the API
The functionality offered by the Rapid API is sufficient for most applications. There are times however when an
application needs to do something different than what the API offers out of the box. Several options are available.
1. Customizing a job by extending one of the Job classes. For example, setting all job parameters in the constructor of

the derived class to avoid polluting the application code.
2. Extending an XMLWriter class to generate custom XML. This is useful when the provided Job classes don’t offer

certain functionality, such as specifying a sub index for audio tracks.

Note: The data and settings are converted to one or two XML orders before the job is submitted for processing.

3. Combination of 1 and 2.
4. Extending XML writer class to generate custom XML for a server request.

Note: Almost all server operations are covered by the API out of the box.

Extend Job Classes
Only the second and third level Job classes can be extended by a client application. If an application needs functionality
that is significantly different from what is offered by the third level classes, then it may make sense to extend the second
level Job classes. Refer to Work with Jobs on page 7 for more information on the Job class.

Note: Second level classes perform less validation than the third level classes because the job types are less specific at
the second level.

When a Job derived class is extended by the client application, almost every method is available for override because
most methods in the Job hierarchy are declared virtual.
A common reason for extending a Job class is to encapsulate the initialization in the subclass’ constructor. Any data or
parameter setting method can be called from the constructor of the derived class.

Note: For reasons specific to the .NET Rapid API implementation, the derived class’ constructor needs to be left blank.
Instead, a virtual method Initialize() is available for this purpose.

Example: Extend a Job class

C++

class SampleUserJob : public ISOJob
{
public:
 SampleUserJob()
 {
 SetImageParam(IsJolietParam, RAPID_TRUE);
 SetProductionParam(CopiesParam, “5”);
 SetProductionParam(MediaTypeParam, MEDIA_TYPE_DVDR_DL);
 }
 virtual ~SampleUserJob() {}
};

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C18

C#
class SampleUserJob : ISOJob
{
 public SampleUserJob() {} // needs to be left blank
 public override void Initialize()
 {
 SetImageParam(FormatParamType.IsJolietParam, ParamValues.True);
 SetProductionParam(ProductionJobParamType.CopiesParam, “5”);
 SetProductionParam(ProductionJobParamType.MediaTypeParam,
 JobParamValues.MediaTypeDVDR_DL);
 }

The UML diagram below illustrates the above example. The diagram also shows another key class involved in job
customization, IJobFactory interface.

Job Factory
Once you write your class you must instantiate it at runtime. To instantiate a custom class, Rapid API requires access to a
Job object factory.
Rapid API internally uses a default job factory to create existing Job objects. To create a user defined Job object, the API
requires a user defined Job factory. The client application implements the IJobFactory interface and gives the custom
factory to the API.
When a ClientSession.Create*Job() method is called by the application, a job type is passed in. If the job type is one of the
user types, the custom job factory is called instead of the default to create an appropriate object. Twenty-four custom
job types can be created by an application. They are listed below:

 • UserImageAndRecordJobType1 through UserImageAndRecordJobType8 for Job classes extended from the
ImageAndRecordJob or its descendants.

 • UserImageOnlyJobType1 through UserImageOnlyJobType8 for Job classes extended from the ImageOnlyJob or its
descendants.

 • UserProductionOnlyJobType1 through UserProductionOnlyJobType8 for Job classes extended from the
ProductionOnlyJob or its descendants.

http://rimage.com/support

110899_C 19

Customize the API

For more information visit rimage.com/support

IJobFactory interface has two methods that need to be implemented
 • Job CreateJob(JobType) creates the custom job by using a new operator.
 • bool RemoveJob(Job) uses the delete operator to remove the custom job.

Note: Unless there are native resources to release or delete, the RemoveJob() method doesn’t need to do anything.

Example: Implementing a Job Factory
C++:

class SampleUserJobFactory : public IJobFactory
{
public:
 SampleUserJobFactory(){}
 virtual ~SampleUserJobFactory() {}
 Job* CreateJob(JobType type)
 {
 if (type == UserImageAndRecordJobType1)
 {
 return new SampleUserJob();
 }
 return NULL; // not created by custom factory
 }
 bool RemoveJob(Job *job)
 {
 if (job != NULL && job->GetJobType() == UserImageAndRecordJobType1)
 {
 delete job;
 return true; // removed
 }
 return false; // not removed by custom factory
 }
};
SingleConnectionSession::GetInstance()->SetUserJobFactory(
new SampleUserJobFactory());

C#
class SampleUserJobFactory : IJobFactory
{
 public SampleUserJobFactory() {}
 public Job CreateJob(JobType type)
 {
 if (type == JobType.UserImageAndRecordJobType1)
 {
 return new SampleUserJob();
 }
 return null; // not created by custom factory
 }

 bool RemoveJob(Job job)
 {
 return true; // garbage collector will clean up the Job
 }
}
SingleConnectionSession.GetInstance().SetUserJobFactory(
new SampleUserJobFactory());

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C20

Generate Custom Job XML
Custom XML generation is available when more functionality is required beyond extending specific Job classes. The
Rimage system processes every submitted job according to one or two XML orders – an Imaging order, a Production
order, or both. Imaging orders are specified by the ImageOrder DTD and Production orders are specified by the
ProductionOrder DTD.

Note: DTDs are located in the Rimage system folder, C:\Rimage\XML by default.

The Rapid API allows you to extend the ImageXmlWriter class, the ProductionXmlWriter class, or both.

Note: The API also allows custom Job classes to coexist with custom XML generation.

This diagram shows the XML writer class hierarchy. The base class is XmlWriter. This class exposes methods common to
all types of DTDs such as setting and getting DTD version and path information. It also exposes a virtual method called
FormatXml() which is the entry point into XML generation. Subclasses of XmlWriter implement this method to generate
XML specific to their type.
XMLWriter class implements the FormatXml() method in the following way:

void XmlWriter.FormatXml()
{
 FormatDocType(GetStringBuffer());
 FormatRootElement(GetStringBuffer()); // implemented by a subclass
 FormatDetails(GetStringBuffer()); // implemented by a subclass
 FormatCloseRootElement(GetStringBuffer());

XmlWriter class has a protected member GetStringBuffer(). This method allows access to the XmlStringBuffer
object which makes generating XML simple. XmlStringBuffer class offers methods such as WriteStartElement() and
WriteAttribute() which take care of XML formatting details allowing the programmer to concentrate on the business
logic. This buffer is passed into every formatting method.
Two XmlWriter subclasses - ImageXmlWriter and ProductionXmlWriter – are used by the Rapid API to generate
job related XML. To customize XML generation for jobs, extend ImageXmlWriter and ProductionXmlWriter. The
ImageXmlWriter class generates an ImageOrder XML string and the ProductionXmlWriter generates a ProductionOrder
XML string.

http://rimage.com/support

110899_C 21

Customize the API

For more information visit rimage.com/support

Customize ImageOrder XML
ImageXmlWriter.FormatDetails() writes elements and attributes which govern how the image is created. The body of the
method looks like this:

void ImageXmlWriter.FormatDetails(XmlStringBuffer xmlStrBuffer)
{
 AddTarget(xmlStrBuffer);
 AddFormat(xmlStrBuffer);
 AddSource(xmlStrBuffer);
 AddOutput(xmlStrBuffer);
 AddRules(xmlStrBuffer);
 AddVolumeName(xmlStrBuffer);
 AddPVDInfo(xmlStrBuffer);
 AddControls(xmlStrBuffer);
 AddCustomize (xmlStrBuffer);
}

The ImageXmlWriter.FormatDetails() method is declared virtual which allows it to be completely overwritten. In most
cases only a certain element needs to be changed. In those cases it is sufficient to overwrite only one of the methods
that is called from the FormatDetails() method, such as AddFormat(). For example:
C++

class SampleUserImageXmlWriter : public ImageXmlWriter
{
 public:
 SampleUserImageXmlWriter(){}
 virtual ~SampleUserImageXmlWriter() {}
 void AddFormat(XmlStringBuffer &xmlStrBuffer)
 {
 // custom code here
 }
};

C#
class SampleUserImageXmlWriter : ImageXmlWriter
{
 public SampleUserImageXmlWriter(){}
 protected override void AddFormat(XmlStringBuffer xmlStrBuffer)
 {
 // custom code here
 }
};

Note: Refer to the ImageOrder DTD located at C:\Program Files\RimageSDK\ApiSdk\XML for the ImageOrder format
details

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C22

Customize ProductionOrder XML
ProductionXmlWriter.FormatDetails() writes elements and attributes which govern how the disc is recorded and what
label to print. This is the same pattern used by ImageXmlWriter. The body of the method looks like this:

void ProductionXmlWriter.FormatDetails(XmlStringBuffer xmlStrBuffer)
{
 AddActions(xmlStrBuffer);
}

The ProductionXmlWriter.FormatDetails() method is declared virtual which allows it to be completely overwritten. In
most cases only a certain element needs to be changed. In those cases it is sufficient to overwrite one of the methods
that is called from the FormatDetails() method, such as AddCustomize(). For example:
C++

class SampleUserProductionXmlWriter : public ImageXmlWriter
{
 public:
 SampleUserProductionXmlWriter(){}
 virtual ~ SampleUserProductionXmlWriter() {}
 void AddCustomize(XmlStringBuffer &xmlStrBuffer)
 {
 // custom code here
 }
};

C#
class SampleUserProductionXmlWriter : ImageXmlWriter
{
 public SampleUserProductionXmlWriter(){}
 protected void AddCustomize(XmlStringBuffer xmlStrBuffer)
 {
 // custom code here
 }
};

Note: Refer to the ProductionOrder DTD located at C:\Program Files\RimageSDK\ApiSdk\XML for the
ProductionOrder format details.

XML Writer Factory
Once you write your extended XML writer class, you need to instantiate it at runtime. To instantiate a custom class, Rapid
API requires access to an XmlWriter factory.
Rapid API internally uses a default XML writer factory to create existing XmlWriter objects. To create a user extended
XmlWriter object, the API requires a user defined XmlWriter factory. The client application implements the
IXmlWriterFactory interface and passes the custom factory to the API.
IXmlWriterFactory interface requires implementation of three methods:

 • CreateImageXmlWriter(JobType) uses the new operator to create the custom ImageXmlWriter object. To specify the
type of XML, a JobType is passed in to the XmlWriter factory.

 • CreateProductionXmlWriter(JobType) uses the new operator to create the custom ProductionXmlWriter object. To
specify the type of XML, a JobType is passed in to the XmlWriter factory.

 • RemoveWriter(XmlWriter) uses the delete operator to remove the custom XmlWriter object.

Note: Unless there are native resources to release or delete, the RemoveWriter() method doesn’t need to do
anything.

http://rimage.com/support

110899_C 23

Customize the API

For more information visit rimage.com/support

Example: Implementing an XML writer factory
C++

class SampleUserXmlWriterFactory : public IXmlWriterFactory
{
 public:
 SampleUserXmlWriterFactory() {}
 virtual ~SampleUserXmlWriterFactory() {}
 ImageXmlWriter* CreateImageXmlWriter(JobType type)
 {
 if (type == ISOJobType)
 {
 return new SampleUserImageXmlWriter();
 }
 return NULL; // not created by custom factory
 }
 ProductionXmlWriter* CreateProductionXmlWriter(JobType type)
 {
 if (type == UDFJobType)
 {
 return new SampleUserProductionXmlWriter();
 }
 return NULL; // not created by custom factory
 }
 bool RemoveWriter(XmlWriter *writer)
 {
 if (writer != NULL)
 {
 delete writer;
 return true; // removed
 }
 return false; // not removed by custom factory
 }
};
SingleConnectionSession::GetInstance()->SetUserXmlWriterFactory(
new SampleUserXmlWriterFactory());

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C24

C#
class SampleUserXmlWriterFactory : IXmlWriterFactory
{
 public SampleUserXmlWriterFactory() {}
 public ImageXmlWriter CreateImageXmlWriter(JobType type)
 {
 if (type == JobType.ISOJobType)
 {
 return new SampleUserImageXmlWriter();
 }
 return null; // not created by custom factory
 }
 public ProductionXmlWriter CreateProductionXmlWriter(JobType type)
 {
 if (type == UDFJobType)
 {
 return new SampleUserProductionXmlWriter();
 }
 return null; // not created by custom factory
 }
 public void RemoveWriter(XmlWriter writer)
};
SingleConnectionSession.GetInstance().SetUserXmlWriterFactory(
new SampleUserXmlWriterFactory());

Note: For more information on customizing job XML refer to the Rapid Custom sample project located at C:\Program
Files\RimageSdk\ApiSdk\Samples\RapidApi

Modifying XML Directly
There is a way to modify the Image and Production order XML more directly. This is accomplished by implementing the
IXmlModifyListener interface. This interface has a single callback method OnModifyOrderXml. This method is invoked
once right before Image order submission and once right before Production order submission.
The caller is allowed to modify the Image and Production order XML through XML or string manipulation. The caller
returns the modified XML to Rapid, which in turn submits it to the Rimage system.
This interface exists to aid the integrator in cases where minor tweaks to the XML are required, but the effort of creating
a custom job and job factory is not warranted.

Generate Custom Server Request XML
Server classes provide most of the functionality offered by the Rimage Imaging and Production servers. In cases where
functionality is required that isn’t provided or a newer server request DTD exists, custom server request XML can be
generated. This is accomplished by extending the XmlWriter class and completely taking over XML generation. The
extended XmlWriter class still has access to the XmlStringBuffer and all detailed formatting methods required to generate
a valid XML string.

Note: The two DTDs involved in server requests are ProductionServerRequest and ImageServerRequest located at C:\
Program Files\RimageSDK\ApiSdk\XML.

http://rimage.com/support

110899_C 25

Customize the API

For more information visit rimage.com/support

Once the XML is generated, call Server.ExecuteRequest(String) to send it to the server for processing. When the
server completes the request, it replies with XML formatted to conform to either the ProductionServerReply or the
ImageServerReply DTD. Call the Server.GetXml() method to access this XML. The following example illustrates the flow:
C++

// generate xml
LPCTSTR requestXml = GenerateProductionRequest(); // user defined method
// get a reference to a server
Server *server =
SingleConnectionSession::GetInstance()->GetServer(“HOST1_PS01”);
// execute the request
try
{
 // this call can time out
 server->ExecuteRequest(requestXml);
}
catch (RimageException &e)
{
 // handle the exception
}
// get the reply
LPCTSTR replyXml = server->GetXml();
// parse the reply xml

C#
// generate xml
string requestXml = GenerateProductionRequest(); // user defined method
// get a reference to a server
Server server =
SingleConnectionSession.GetInstance().GetServer(“HOST1_PS01”);
// execute the request
try
{
 // this call can time out
 server.ExecuteRequest(requestXml);
}
catch (RimageException e)
{
 // handle the exception
}
// get the reply
string replyXml = server.GetXml();
// parse the reply xml

XmlWriter class requires the generated XML to include the DTD file path. This is accomplished by communicating the DTD
name, version, and folder location of the DTD file to the API.
To generate a valid server request XML, overwrite two XmlWriter virtual methods FormatRootElement() and
FormatDetails(). To write out the XML header for the request, overwrite the FormatRootElement() method.

Note: ProductionXmlWriter and ImageXmlWriter classes write out the correct header automatically.

The following example shows how to generate the ‘Get autoloader status’ request.
C++

class SampleUserPSRequestXMLWriter : public XmlWriter
{

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C26

 public:
 SampleUserPSRequestXMLWriter()
 {
 SetDtdName(“ProductionServerRequest”);
 SetDtdFileVersion(“1.4”);
 SetDtdFolderPath(“c:\\rimage\\xml”);
 }
 protected:
 void FormatRootElement(XmlStringBuffer &xmlStrBuffer)
 {
 xmlStrBuffer.WriteStartElement(GetDtdName(), 0);
 xmlStrBuffer.WriteAttribute(“ServerId”, “SWRASKINREST_PS01”);
 xmlStrBuffer.WriteAttribute(“ClientId”, “client1”);
 }
 void FormatDetails(XmlStringBuffer &xmlStrBuffer)
 {
 xmlStrBuffer.WriteStartElement(“GetServerStatus”, 1);
 xmlStrBuffer.WriteAttribute(“GetAutoloaderStatus”, “true”);
 xmlStrBuffer.WriteCloseElement(“GetServerStatus”);
 }
};

C#
class SampleUserPSRequestXMLWriter : XmlWriter
{
 public SampleUserPSRequestXMLWriter()
 {
 SetDtdName(“ProductionServerRequest”);
 SetDtdFileVersion(“1.4”);
 SetDtdFolderPath(“c:\\rimage\\xml”);
 }
 protected override void FormatRootElement(XmlStringBuffer xmlStrBuffer)
 {
 xmlStrBuffer.WriteStartElement(GetDtdName(), 0);
 xmlStrBuffer.WriteAttribute(“ServerId”, “SWRASKINREST_PS01”);
 xmlStrBuffer.WriteAttribute(“ClientId”, “client1”);
 }
 protected override void FormatDetails(XmlStringBuffer xmlStrBuffer)
 {
 xmlStrBuffer.WriteStartElement(“GetServerStatus”, 1);
 xmlStrBuffer.WriteAttribute(“GetAutoloaderStatus”, “true”);
 xmlStrBuffer.WriteCloseElement(“GetServerStatus”);
 }
}

Note: For more information on customizing server request XML, refer to the Rapid Custom sample project located at C:\
Program Files\RimageSdk\ApiSdk\Samples\RapidApi

 AddMedia(xmlStrBuffer);
 AddTarget(xmlStrBuffer);
 AddInOut(xmlStrBuffer);

http://rimage.com/support

110899_C 27

Samples

For more information visit rimage.com/support

Samples
The Rimage SDK installation includes sample projects for working with the Rapid API. By default these projects are placed
in the C:\Program Files\RimageSdk\ApiSdk\Samples\RapidApi folder. The samples are broken into C++ and .NET (written
in C#) samples. C++ samples are located under the \C++ subfolder and C# samples are in the \NET subfolder.
Three sample projects are available for each environment, they are:
• Rapid Hello World – this sample project is an introduction to the Rapid API. This sample takes the user through the

most basic steps of connecting, creating and submitting a job, and disconnecting. This is meant to help you produce
your first disc as quickly as possible.

 • Rapid Comprehensive – this sample project includes examples of how to use the whole API. This includes setting up
listeners, creating and customizing jobs, enumerating Rapid API objects, working with servers and alerts, and much
more.

 • Rapid Custom project – this sample project shows how to extend various classes to customize jobs and XML
generation.

http://rimage.com/support

110899_C 29

Deployment

For more information visit rimage.com/support

Deployment
C++ Deployment

Build Information
The Rapid API has been compiled using the Visual Studio 2005 VC8 compiler. Rimage DLLs include their version in the
name of the file. The name/version has the following format:
<name>_<major>_<minor>_n_<interface>.dll

 • Major version is seldom incremented, and only if a Rimage system undergoes a significant architectural change. For
example, version 5.x to version 6.x – the Rimage system changed from file based to messaging/XML based.

 • Minor version is incremented if a DLL is changed for a new release. Applications using this DLL need to be rebuilt.
 • “n” represents an internal build/bug fix version for a specific minor version. The actual File version of the dll has a

number in place of “n”. For example if the dll is named RmRapid_2_0_n_0.dll, the File version of this dll could be
2.0.26.1.

 • Interface version represents iterations of the API itself. If the exported interface of the DLL itself is changed, this
version is incremented and the applications using this DLL need to be rebuilt.

Note: The _u option indicates Unicode versions; no _u indicates non-Unicode versions.

Required Files and Folders
The following files and directories are required in C++ projects. Specify the paths and specify the .lib files (either Unicode
or non-Unicode) as indicated.

Required DLL Files (Non-Unicode)

Installed by default in
C:\Program Files\RimageSdk\ApiSdk\bin and \bin(x64).
RmRapid_2_0_n_1.dll
RmClient_8_0_n_5.dll
RmRms_1_3_n_1.dll

Microsoft Visual C++ 2008 SP1 Redistributable Package is required.

Required DLL Files (Unicode)

Installed by default in
C:\Program Files\RimageSdk\ApiSdk\bin and \bin(x64).
RmRapid_2_0_n_1_u.dll
RmClient_8_0_n_5_u.dll

RmRms_1_3_n_1.dll

Required LIB Files (Non-Unicode. Does not apply to .NET deployment.)

RmRapid_2_0_n_1.lib

http://rimage.com/support

Rimage Rapid Api Programming Guide

For more information visit rimage.com/support 110899_C30

Required LIB Files (Unicode. Does not apply to .NET deployment.)

RmRapid_2_0_n_1_u.lib

Required Include Directory (Does not apply to .NET deployment.)

Installed by default in C:\Program Files\RimageSdk\ApiSdk\include\rapid

Required #include Statement (Does not apply to .NET deployment.)

#include <RapidApiInclude.h>

(This file contains all headers files for the Rapid API.)

Optional Files

rmapi_log.properties – Place this file in your application’s working folder to produce a Client API log file.
rapid_log.properties – Place this file in your application’s working folder to produce a Rapid API log file.

These files can be found in C:\Program Files\RimageSdk\ApiSdk\bin folder.

.NET Deployment

Build Information
The Rapid API has been compiled using Visual Studio 2005 and .NET Version 2.0.
Rimage.Rapid.Api assembly implements the.NET API. This assembly can be used in any application written in a .NET
supported language.
This assembly is strongly named, which among other things means that Common Run Time (CLR) takes the Assembly
version of this assembly into account at load time.

Required Files and Folders
The following files are required in C#, VB.NET, or any other .NET project.

Required .NET Assembly Files
Installed by default in C:\Program Files\RimageSdk\ApiSdk\bin.

Rimage.Rapid.Api.dll

The rest of the file list is identical to the Unicode list in C++ Required Files and Folders section.

64 Bit Deployment
SDK 8.1 includes x86 and x64 dlls and libs.
File system location for x86 files: C:\Program Files\RimageSdk\ApiSdk\bin and \lib.
File system location for x64 files: C:\Program Files\RimageSdk\ApiSdk\bin (x64) and \lib (x64).

http://rimage.com/support

110899_C 31

Appendix A

For more information visit rimage.com/support

Appendix A
Client ID and Job ID Uniquenss Rules
Note: A JobID is automatically generated if you do not provide one.

Each ClientID and JobID must be unique. To ensure job uniqueness, Rimage makes the following recommendations:
 • The ClientID must be used to connect to Messaging Server (eMS). Messaging Server requires ClientID uniqueness and

returns an error when connected if a non-unique ClientID is detected. This ensures ClientID uniqueness.

Note: Because more than one instance of an application can be run on one computer, the Rimage applications’
ClientID is in the form of <HostName> + _ + <ApplicationInstanceId>.

 • Integrators must ensure that the JobIDs they generate for a client application are unique. There is still a possibility
that two clients will generate identical JobIDs, which is resolved as follows:

 • Production and Imaging servers must take both JobIDs and ClientIDs into account to ensure order uniqueness
internally to the server.

To reiterate:
 • The JobID is unique in the client application’s space.
 • The ClientID is unique in Messaging Server (eMS) space. The ClientID includes the <HostName> + _ +

<ApplicationInstanceId>.

Note: Alphanumeric character entries are typical for the ClientID and JobID. The period . and backslash \ must be
excluded from the ClientID and JobID entries.

http://rimage.com/support

110899_C 33

Appendix B

For more information visit rimage.com/support

Appendix B
Reference Documentation
For more information about Editlists, refer to the document located at:
C:\Program Files\RimageSdk\Manuals\Programming Guides\Editlists.pdf

For more information about label merge fields, refer to the document at:
C:\Program Files\RimageSdk\Manuals\Programming Guides\ Using Label Merge Fields.pdf

For more information on server alert Action IDs, refer to the document at:
C:\Program Files\RimageSdk\Manuals\Programming Guides\ Server Alert Action IDs Reference.pdf

For more information on CD Text, refer to the document located at:
C:\Program Files\RimageSdk\Manuals\Programming Guides\ Using CD Text.pdf.

http://rimage.com/support

	Important Information
	Support Information
	Learn More Online
	Technical Support
	Optical Disc Recording Software Disclaimer

	Introduction
	Rapid API Features
	Get Started

	Work with the API
	Work with Sessions
	Client Session
	SingleConnectionSession
	Connection

	Work with Listeners
	Listener Callback Options

	Work with Jobs
	Create a Job
	Set Job Data
	Jobs Spanning Multiple Discs
	Set Job Parameters
	Job Parameter Defaults

	Submit a Job
	Durable Jobs
	Monitor Jobs
	Recover Durable Jobs

	Work with Parameters
	Work with Servers
	Work with Server Alerts
	Work with Server Orders

	Memory Management
	Enumerate Objects
	Exception Handling

	Customize the API
	Extend Job Classes
	Job Factory

	Generate Custom Job XML
	Customize ImageOrder XML
	Customize ProductionOrder XML
	XML Writer Factory
	Modifying XML Directly

	Generate Custom Server Request XML

	Samples
	Deployment
	C++ Deployment
	Build Information
	Required Files and Folders
	Required DLL Files (Non-Unicode)
	Required DLL Files (Unicode)
	Required LIB Files (Non-Unicode. Does not apply to .NET deployment.)
	Required LIB Files (Unicode. Does not apply to .NET deployment.)
	Required Include Directory (Does not apply to .NET deployment.)
	Required #include Statement (Does not apply to .NET deployment.)
	Optional Files

	.NET Deployment
	Build Information
	Required Files and Folders
	Required .NET Assembly Files
	64 Bit Deployment

	Appendix A
	Client ID and Job ID Uniquenss Rules

	Appendix B
	Reference Documentation

