Rimage Client API™ Programming
Guide

For Rimage Software Development Kit 8.1

Corporate Headquarters:

Rimage Corporation

7725 Washington Avenue South
Minneapolis, MN 55439

USA

800-553-8312 (toll free US)

Service: +1 952-946-0004 (Asia/Pacific,
Mexico/Latin America)

Fax: +1 952-944-6956
European Headquarters:

Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach Germany

Tel: +49-(0) 6074-8521-0
Fax: +49-(0) 6074-8521-100

110700_L

Rimage Corporation reserves the right to make
improvements to the equipment and software
described in this document at any time without any
prior notice. Rimage Corporation reserves the right to
revise this publication and to make changes from time
to time in the content hereof without obligation of
Rimage Corporation to notify any person or
organization of such revisions or changes.

This document may contain links to web sites that were
current at the time of publication, but may have moved
or become inactive since. This document may contain
links to sites on the Internet that are owned and
operated by third parties. Rimage Corporation is not
responsible for the content of any such third-party site.

©2011, Rimage Corporation

Rimage® is a registered trademark of the Rimage
Corporation. SDK™ is a trademark of the Rimage
Corporation. Dell& is registered trademark of Dell
Computer Corporation. FireWire& is a registered
trademark of Apple Computer, Inc.

All other trademarks and registered trademarks are the
property of their respective owners.

©2011, Rimage Corporation

Contents
IMPOrtant INfOrMALIONuveiie e e e e e e e e e e e e eeaees 1
{0 o] oo AT 0] (o] g aaT=1 1 o] o HU PP PRI 1
LEAIN IMOIE ONIINE ...ttt ettt e e e ook e et e e e e e s e aab b et e e e e e e e e nabbeeeeaaeesaannbbbneaaaaeeaanns 1
T o T [Tod [o PP 3
OVBIVIBW ...ttt ettt ettt et oo oottt et a2 o4 o4k bt be et e e 2244 4a R R bbb et e a2 e e e e oanbbebe e e e e e e e e annbbbeeeeaeesaannbnnneaaaens 3
O 1= oL o I =TS [o TP PUPPPPPPPPRRP 5
ClENT APTUSE OF XML, ..eiiiiiiie ettt ettt ettt e et e e sttt e e et e e e enbb e e e e anbbe e e e snbaeeeennees
XML Encoding Format for Production Server and Imaging Server
Rimage DTDs
DTD Location
DTD Versions
Client ID and Order ID UNIQUENESS RUIESeeiiiiiiiiiiieit ettt e e e e e eea s 8
Client API Programming Class DEfINITIONSccooiiiiiiiiiiii i 9
System-Related OPEratioNS GIOUDceeua aiiueeeeeeae e ettt e e e e e e e bt aeeeaeeasaaabaeeeeaaeasaansaeeeeaaeasaansnseeeaaeasaannnnneaeans 9

Server-Related Operations Group
Order-Related Operations Group

SYSTEM MANAGEMENT ...t e e e e e e e e e e e e e e e aa e e eaa s

070 T g T=Tod B (0 IRt A T=T] Y] (=] o
SYSEEMMANAGET.CONMEBCT() -+t eeeeeeetteeeee e e et ettt et e e e e e ettt ettt e e e e e aatbeeeeaeeeaantbeeeaaaeaeaansbsseeaaeeeaannnsseeeaaesaannnens
SySteMMaNAgEr.DISCONMECE() .. .eeeeueieieeee e e ettt e e e ettt e e e e e ettt e e e e e e antaeeeeaaeassansbeseeaaeesaannnsseeeaaesaannnnens
KT 10T o] (=N 0o T [PO UPRRRIRE

Start/End Session using .NET with C#.............

Start/End Session using Java

Start/End Session using C++.....
Start/End Session using C
SEArt/ENG SESSION USING VB B.....eeeeieiiiite et e ettt ettt e e ettt e e e e e e bt e e e e e e skt bt e e e e e e e e nbbebeeaeeeaannbbeeeeaeeaannnnnen

TSy =T R (0TS Y] =] T V=T) £ S SRR
SystemManager.listenForSystemStatus(SYStEMLISTENET)ieiiiiiiiiiiee ettt e e e nenes 14
SyStemMLIStENEr.ONSYSTEMSTATUS() .. .-..vreeereeei ittt e e e e ettt e e e e e ettt e e e e e e e s atbe et eeaeassannbbeeeaaeeeaannnsneeeaaesaannnnnns
SystemListener.onSystemException()...............

SystemListener.onClusterCreated()..................

SystemManager.onClusterDeleted().................

SystemManager.removeSystemListener()

T La0] o] (= 0o o L= RO UUPURRTRINE
Listen for System Events using .NET with C#....
Listen for System Events using Java................
Listen fOr SYStEM EVENTS USING CHeiiieiiiiiiiii e e ettt ettt e e e ettt e e e e e s stbb e e e e e e e e bbb b e e e e e e e aabnbneeaeeeaaannbbneeeans
Listen fOr SYStEM EVENTS USING C.......ueiiiiiiiiiiiiiii ettt ettt e e e ettt et e e e e e abe b et e e e e e e s nbbs et e e e e e e nsbbeeeae e e e nnbnneaeaens
Listen fOr SySteM EVENTS USING VB Beeeeeiiiiiiieieee e e ittt e e e s e sttt e e e s st e e e e e e s nssate e e e e e e s sntnaeeeeeesssntanaeeeeansnnnsneeeeas

SEIVEr MaNAgEMENTeiiei et e e e e e e e e e e e e e e eaa s

LIStENING FOr SEIVEE EVENTSeiiiiiiiiiiieeie ettt e ettt e e e e ettt e e e e e s e s aab b e e e e e e e e e s nnbbeeeaaaeeaanns 19
ServerManager.listenForServerEvents(ServerEVENTLISTENET)uveiiiieiiiiieie et 19
ServerManager.removeServerEVENTLISTENEI()c . e it ie ettt e e e e et e e e e e e e ee e e e e e e nneees 19
Sample Code

Listen for Server EVENts USING .NET WIth CH.......oviiiiiiiiiiiiee et e st e e e e st e e e s st e e e e e s st ee e e e e e e nnnsranaeeeeans 19
LiSten fOr SErVEr EVENTS USING JAVA.eteeeiiittieeiee e e ettt e e e e ettt e e e e e e e bbe et e e e e e e aabab et e e e e e s s abbe e e e e e e e anbbbeeeae e e e nnbnneeaaeas 21
Listen for Server Events using C++
Listen for Server Events using C..........
Listen for Server Events using VB 6

SYNChronOUS SENVEN IMETNOUSeviieiiie et e e e e e e s s e e e e e e s e snnrree e e e e e e e e nnnnnees
Sample Code........oeeiiaiiiiiiiie e
Server Methods using .NET with C#

110700 L ©2011, Rimage Corporation

&(Rimage APl Programming Guide

Server Methods using Java
Server Methods using C++...............
Server Methods using C...........c.......
Server Methods using VB 6

(@ o =T Y F= Vg F= o= 1= o USRS

RSV o 14T A0 1= PP PPPPPPPRE
Order Management IMETNOUS. ..o ittt e e e e e e s bbb e e e e e e e e s nabebeeeaeeeeaanes
OrderDescription Parameter
XMLOrder Parameter.......................
(@ 0 T3 - ST (= 3T

(0] 0 1= T] o) oo SRR
OrderDescription Object a5 @ RETUIN VAIUEcoiuiiiiiiii ettt e e e e e e e st raaeeaeeaan 31
Cancel an Order in Process
R CTo o)L= O] o [T O R U OUPUPPRPPN:
OrderDeSCriPtION BASE ClaSSuuvviiieeeiiiiiiiiieee e e s ittt et e e e s s et e e e e e s s et e et e e e e easabtbaeeeaeesssstbaneeaeeessansbenaeaaeesan
ImageOrderDescription Sub Classc.cccuvvvee.

ProductionOrderDescription Sub Class

3 (=T V0 oS

3] o 7= o 11

Order Management SAMPIE COAE.........uuiiiiiaiiiie ettt e e e e e e e e e sabebe e e e e e e e aaanes
Order Management USING .NET Wt CHoooii oottt e e et e e e e e e naneneeeaee s 36
Order Management using Java
Order ManagemMENT USING CHuuiiieeiiiiiiiiii e e e e ettt e e e e e s st e e e e e s s st e et e e e e e s sabtbaeeeaeesssstbaneeaaeessassbsaeeeaeeaan
Order Management using C..............
Order Management using VB 6

Server Status and CONTrol PrOTOCON oo 45

Server Command SYNCAFONIZATIONo..eeiiiieieee et e e e e e eebaeeeaaeeas 45
Password Protection 0N COMIMANTSuuiiiirieiiieie e e et eeeet e e eea e e s esa e e e ss b esessaa e sssaasesebaasersnnsaees 46
Production SErVEE COMMEANTScieeeeiiiete e e et e et e e et e e e et e e e eea e s s e sa e e s st esessba e sssaansesebanasaessnsaaes 46
Command Summary
Command Reply........
Command Details

T oL o JST=T V=T 0o 4] =TT SRS 52
Command Summary
Command Reply........
Command Details

D=1 o] ()] 4 1=1 o1 PR SSURPPP

=AY 7- T 1= o] 017 1 T o1 R
Build Information
REGUITEA FIIES ...ttt e ettt e e e et e e e e e ettt et e e e s s e st b eb e et e e e e easaatb e et eeeeeasstbaeeaaeeeassssbaesaaaeessnnne

B AN = o])Y/ 0 T o | SRS
Build Information
Required .NET Assembly Files

O A0 Y I G =T][0 Y7021 | PSR
BUII INFOIMELION ...t e et e et eesr s beesre e
REQUIrEA LINKEE OPTIONS.eeeeeeie ettt ettt e e ettt e e e e e ettt et e e e e e e aae b e et e e e e e e nntbeeeaaeeeaannsbneeaeaeasannes
ReqUIred FIlES aNd FOIABISeeiiii ittt e e oottt et e e e e et bttt e e e e e e nnebeeeeaeeeasnnrbneeaaaeasannes

Required DLL Files (Non-Unicode)
Required DLL Files (Unicode)
Microsoft visual C++ 2008 SP1 Redistributable Pack iS REQUITEM.ooiiiiiiiiiiiiie e 56
Required LIB Files (Non-Unicode)
Required LIB Files (Unicode)
Required Include Directories
Required #NCIUAE STATEIMENTSoi ittt oo ettt e et e e e st b e et e e e e e e abbbe e e e e e e s snbeseeaeeaaanbnbneeeaeeaannnes

6 110700_L

(0] 0] do] ¢ I 11T PO PP OPPPPPPRRTPOOE 57

oZi o1 o (=T 0] (0] 1 1= o | TSP PP UPTT T UOPPPPPN 57
Appendix A — Sample Source Code PrOJECEScoooiiieiiiiiiiiee e 59
Appendix B — Sample XML DOCUMENTSuuuuiieeeeeeeeeeiiiiiiee e e e e e eeeeeeae e e e e e e eeeeaannn s 61
IMAGE OFOEE SAMPIES ...ttt ettt ettt e e e e e ettt et e e e e e s bbb et e e e e e e e e asnbbeeeeaeeeesannnbbeeeaaaeeaann 61
ISO L2 With EQitliSt IMAGE OFUEN ... ittt ettt e e ettt e e e e e e e et bee e e e e e e e anntaneeaaaeeanns 61

ISO L2 from Parent FOIAEr IMAge OFAENc.cciiiiiiiiieei ettt e e e e e e e e et e e e e e e e e sntbaeeaaeeeaas 61
ROCKRIAGE IMAJE OFUET ..vviiiieeeiiiieie et ettt ettt e e e e e et e e e e e e e et e et e e e e e s santb e e e aaeeeesstbaaaeaaeessntbrreeaens 62
Production Order SAMPIES.eiii ettt e et e e e ettt e e e e e e s e s aab b e ae e e e e e e sannbbeeeaaaeeaanns 63
AUTIO PrOTUCTION OFUET ...ttt ettt e st et e e sn et eenane s 64
Blue BOOK PrOQUCTION OFUETeiiiiiiiit ittt ettt 65
Lo S o oo [0 Tot T (N (o =T PR SPRPR 66
PriNt ONlY ProQUCTION OFOETeeieeieee ettt ettt ettt e e e e e ettt e e e e e e s antbe et e e e e eeanbbeneeaae e annnneeeaens 67
Data DiSC PrOGUCTION OFUETeeieieeei ittt ee e e ettt e e e e ettt e e e e e e e et et ee e e e e e e natbeeeeaeeaaannsbneeeaeeeaannsaneeaaaeaannn 67

(0] 0 (=]] LU T a0 o] [T TP ETTTR ORI 68
[T e O] (o (=T] - L LU USROS SPRTR 68
ProduCtioN OFOEI STATUScoouiiiiieiitit ittt ettt e ser e sen e st e seb e st e seneenens 68
SPANNING XML SAMIPIES ..ottt e e e s et e e e e e e e e s bt e b e e e e e e e s e sanbbeeeeeaeeeannnneees 68
1 To TS @ (o [T PR SUSPRPR 68
LT RO (o L=] 7= L1 SO PPRPP 69
(00 (= g S T T P T TR O SPU PP T PP RO OPRPUPROTRN 69

(0] (o 1= =]] = LU RO UUUPUPUTRINE 69

o (oTo [UTod (o] g T o (=T £ USSP RUT PP 70
ProduCtion OFOEI STATUSESveiiiieirit ittt sttt st ser e sen e st ser e e s e e sene e e 71
Server ConfigUration SAMIPIES ettt e e e et e e e e e e e et e e e e e e e e e e nneeees 71
Production Server CONFIGUIATIONcu ettt e e e e e ettt e e e e e e s nt e e e e e e e e ennnneeeeens 71
IMaging SErver CONFIGUIALIONiiiiii ittt e e ettt s e e e e s e et e e e e e s b b e et e e e e e e ssntbaeeeaeesasnnsbaeeaaeeeaans 72
SEIVET DIAlOg SAMIPIES ...ttt e ettt e e e s et e e e e e e e e s b b e et e e e e e e e e ranbb e e e e e e e e e e nnnaees 72
FA =] =1 o o RPN 72

[(o g D] T-1 (oo O PUPPR PR 72
Server ReqUESE / REPIY SAMPIES ...ttt e e et e e e e e e s e sanbb e e e e e e e e e e e nnneees 73
GESEIVEISTALUS REQUESTeeeeiiiiiiiiiieiiteeeeee ettt ettt ettt ettt e ettt et e e e e et et et e e et e teeeeee et eeeeeeeeeeee et et et e e et aeeteeeeeeeaeanes 73
GEESEIVEISTATUS REPIY ..ttt ettt e ettt e e e e ettt e e e e e e st b e e e eeee e e s ntbtbeeaaeessassbebeeeaeessannnnes 73
SETPAIAMETET REQUEST ... ettt ettt ettt ettt ettt ettt ettt et e ettt ettt et et e ee e et et ettt e eeeeee e et et eeeeeeeeeeeeeeeeeeeenenes 73

Rl L L= T =] (T e (CT o] USSR UPURRTRINE 74
Appendix C — Server Status and Control Password ENcryption...........cccoeeeeeeeevvveviinnnnnnn. 75
o pToT Y o] [T A\ =1 d g To o T ET TP 75
Rimage Core ENcryption AlgOrthm..........ueeiiiee e e e e e e e e e e e e e e e e enas 75
Password ENcoding SAmpPIes USING CH...uuuuiiieeeiiiiiieiieee e e sseiiieeee e e e s s ssteane e e e e e s s snntnaeeeeeeesnnnnnsnneeeeeesanns 76
Encoding and Decoding @ IMBCS STNQuvuiiirieeiiiiiiieie e e e s eeit e e e e e e e r e e e e s s st e e e e e e e e snbbaaeeaaeessntaraeeeens 76
Encoding and Decoding @ UNICOAE STHNQeiiiiaiiiiiiiie ettt ettt e et e e e e e e ne e e e e e e e e ennnneeeaens 77
APPENdIX D — EFTOr COUBS ..o 81

110700 L ©2011, Rimage Corporation

Important Information 8,&

Important Information

This section provides support contact information, cautions and warnings, and product specifications for the
SDK.

Support Information

US, Asia/Pacific, Mexico/Latin America Europe

Rimage Corporation Rimage Europe GmbH

7725 Washington Avenue South Albert-Einstein-Str. 26
Minneapolis, MN 55439 63128 Dietzenbach Germany
USA

Attn: Rimage Services

Contact Rimage Services: Contact Rimage Services Europe:
Website: www.rimage.com/support Website: www.rimage.de
KnowledgeBase: http://www.rimage.custhelp.com | Email: support@rimage.de

Log in and select the Ask a Question tab. Telephone: +49-(0) 1805-7462-43
Telephone: Fax: +49-(0) 6074-8521-101

North America: 800-553-8312
Asia/Pacific, Mexico/ Latin America: 952-946-0004

Fax: 952-946-6956
When you contact Rimage Services, please provide: | My Rimage Product Information:
System serial number and software version. Copy this information from your Rimage Product for

Functional and technical description of the future reference.
problem. Note: Make sure you update the Serial Number

here anytime you receive a replacement
autoloader.

Exact error message received.

Serial Number:

Product Name:

Date of Purchase:

Learn More Online

At www.rimage.com/support, you can experience Rimage’s world-class Support and Services.

From the Support home page: From the product page you can access:
1. Select your product series. i Information about the latest software and
firmware updates

i Product specifications
i The latest documents
i Current firmware and driver downloads

2. Select your product.
3. Learn more on the product page.

110700_L 1

http://www.rimage.com/support.html�
http://www.rimage.com/support_form.cfm�
http://www.rimage.de/�
mailto:support@rimage.de�
http://www.rimage.com/support.html�

Introduction 8,&

Introduction

The Client API allows third-party developers and users to access Rimage Production Orders and Image Orders.
The Client API includes Rimage XML DTDs as well as a set of Java and C/C++ APIs. The Client API provides an
open and platform-independent way to access the publishing power of Rimage systems.

This document provides programming information necessary to create a custom application using the Rimage
Software Development Kit (SDK). This includes Client API programming, Rimage XML APIs, and XML- based
Status and Control for Production and Imaging Server.

Overview

The Client API consists of two parts:
The programming interface

The XML interface

The programming interface acts as a conduit for passing information between the client and the Rimage
server. The data that is passed from the programming interface to the Rimage server is described in XML. The
XML document can include order information, order status, and server information. The use of XML allows the
programming interface to stay fairly simple and look almost identical across languages (Java, C++, etc.). When
future additions are needed, only the XML definitions (DTDs) should require change and not the programming
interface.

110700_L 3

Client API Design 3,)\/

Client API Design

Client APIs exist in Java, C / C++, and .NET.

The C++ and C APIs are written for Windows only and are packaged as DLLs. The C++ and C APIs are
Microsoft Visual C++ compatible.

The Java Client APIs are compatible with JDK version 1.4 and above.

The Client API layer presents a client-based interface that allows Rimage applications and third-party
applications to perform actions that include submitting orders, receiving unsolicited order statuses, canceling
orders, receiving unsolicited system statuses, and setting server parameters.

The illustration below shows the Rimage Client API layers and overall organization in a distributed
deployment.

Rimage Messaging System

Rimage Client API Layers

110700_L 5

& Rimage APl Programming Guide

The UML (Unified Modeling Language) diagram of the Client API is shown in the figure below.

Ordarklanager Spateblanager
[l Traertlonege: F Jefirasancel) . SysicmMonager
s ramortinance!]
s baTetOesiar] . in amiOndes - Siring, in orderListener | OrderStanusl istener] b corcain casitl | Stng)
=subrritQechar(in ordeeDuse | OrderDarseription, in esi(rde © String) Fronneci(in disntid : Siing. in host - Sirng. in pont : String)
g sbrritCiedan in xmiCedr < Siring, in ondrListener | DiedarStatusListener) - OrderDescription = daconnect]
e ga bt Clechar{in xmiCedier - Siring) - OrderDesoription Fatarkain clantd © Siring)
oD | DenrTMscription, i amiDeser | Sving, in oederl istenes | DederStnusLisiones hatrdonar |
subrmitDyurableOrdedn armiCrder | Sinng, in orderLintine - OrderSzatuslntice) : OrderDuncripton |
= cancsiOrdeniin onderDesc I abonCurment - boolean) - booksan -DEFREG&TEDWMnm SarraiaL i |
in orderDess | OnderDescriotion) | i aystemiiviensr | Systemiisensr)
ractrrndenin CedarDiptaripfion, in cedrListenss : DechrStatuslistiner) Demsttﬁnmmﬁumm
[1] : 15 Ti Intager)
uselrrmalimaginglin uie | bockan) Jog T beiin Meefiath : Stengi
iy indermallmaging]} - bookean L getCRentd() - Siring
; : Foeton) S
jsees - ' R ot
S H DEPRECATED
! L e amess
i . T 1
OrdarDescription | = !
""I'F':“gl‘w s sinfariacas | sinfariacas
foectacta : artintace Servarlistene: SyatemLinliser
eentia: Sty OrderStatusbissener CarvarActi e SV SorO TraE o sysiamE soeption | Sng]
rangeChuster : Steng e g me&ﬂ +DEPRECATED oo SraternSiatusin smiSrsiemSiats | Sting)
-W.&m Clustent - Bxing, dn Tope -
[ty Sring _El}' eoeCusten it ity | S, i s Type - lnfoger]
ﬁr sirdertatie
ServarEwntiLintedar
renGan AN Crlld | g
sy © Stng, in daloghd © Sinag
o S Pisiin Senaaid |
oS PiinPndinglin sered - Sing)
gt g - oo StwPandng(e sanod Siingl
; m e Sirvir ShulswnPevidingfin Sofverky | Sting]
] i G
mﬂ:m -
letion:eng
FanChstingutiiin : Sring 1
|catorhasabod - Infiger :
oo | Intager in
ServarManager

baicute SerearFliguat(n sereerd - String, s srifeguent | Siing) | String)
fimtenf orServerDvents|n serverDveniListener | Serverlvenilnfarat)

Moy S E il Eenein]

ratanSaevice(n hosl : Strieg, i e Tyge ; Intiger)
restartSerdicnin host : Sirng. in secvecType | inleger)
b siopServios{in host : Sirng. in sererType : inlsger]

Client API Interface UML Diagram

6 110700_L

Client API Design 8,&

Client APl Use of XML

The Client API uses XML to pass data from the programming interface to the Rimage server. The XML
document must conform to a Rimage DTD. To validate incoming and outgoing XML documents, each software
component must access the Rimage DTD.

— Note: Itis the end user's responsibility to validate the XML strings before sending the XML document.
XML Encoding Format for Production Server and Imaging Server

The XML encoding format varies between Production Server (PS) and Imaging Server (IS).

- Note: Rimage recommends leaving the encoding format options unspecified to allow the servers to
determine the correct encoding.

In Imaging Server, the XML encoding format options are blank, UTF-8, and UTF-16.

In Production Server, the XML encoding format options are blank and UTF-16.

Rimage DTDs

The following DTDs are provided by the Producer Software Suite 8.x installation and are used by the Rimage
components and third-party applications.

These Rimage DTDs can be grouped into several categories:

- Note: The actual file that is installed has a version number appended
(e.g., ProductionServerConfiguration_1.10.dtd).

DTD Type Related DTDs

Order ImageOrder.dtd
ProductionOrder.dtd
CdText.dtd

Order Status ProductionOrderStatus.dtd
ImageOrderStatus.dtd

Spanning OrderSet.dtd
OrderSetStatus.dtd

Server Configuration ProductionServerConfiguration.dtd

ImageServerConfiguration.dtd
BridgeServerConfiguration.dtd

Server Dialogs AlertDialog.dtd
ErrorDialog.dtd
Server Status & Control ProductionServerRequest.dtd

ProductionServerReply.dtd
ImageServerRequest.dtd
ImageServerReply.dtd

Miscellaneous DiscMap.dtd
FullDiscMap.dtd

110700_L 7

&(Rimage APl Programming Guide

DTD Location

All Rimage components (e.g., Production Server, QuickDisc, or a third-party client application) must have
access to the DTDs used in the Rimage messaging system. During the Rimage SDK installation, the DTDs are
placed by default in the specified folder location C:\Program Files\RimageSDK\ApiSdk\XML . The SDK
installation procedure allows this folder location to be changed.

- Note: You can also change the folder location by running the install in Repair mode after an initial install
has been performed.

XML parsers must know the location of the DTD against which the XML document is verified. The full path to
the DTD must be specified in the XML document itself.

J Important! If the document specifies just the name of the DTD, the parser assumes the DTD exists in the
current folder and errors out if this is not the case.

For example, if a client submits a Production Order for processing, the SYSTEM line must read something like
this:
<IDOCTYPE ProductionOrder SYSTEM "'C:\rimage\xmI\ProductionOrder_1.0.DTD">

DTD Versions

The version of a Rimage DTD is reflected in the DTD file name. For example, ProductionOrder_1.0.dtd isa 1.0
version of the ProductionOrder. Any change to the ProductionOrder increments the version and alter the DTD
file name accordingly. This allows multiple DTD versions to coexist in a single folder and ensures that the
version of each DTD is easily identified.

Client ID and Order ID Uniqueness Rules
Each ClientID and OrderID must be unique. To ensure order uniqueness, Rimage makes the following
recommendations:

The ClientlD must be used to connect to the Messaging Server (eMS). The Messaging Server requires
ClientID uniqueness and returns an error at connect time if a non-unique ClientID is detected. This ensures
ClientID unigueness.

- Note: Because more than one instance of an application can be run on one machine, the Rimage
applications’ ClientID is in the form of <HostName> +"_" + <ApplicationInstanceld>.

Developers must ensure that the OrderIDs that they generate are unique for a particular client
application. This still leaves the chance for two clients to generate identical OrderIDs, which is resolved in
the following requirement.

Production and Imaging servers must take both OrderIDs and ClientIDs into account to ensure order
uniqueness internally to the server.

The ClientID and OrderID uniqueness rules:
The OrderlD is unique in the client application’s namespace.

The ClientID is unique in the Messaging Server namespace.
The ClientID includes the <HostName> +" " + <Applicationinstanceld>.

Alphanumeric character entries are typical for the ClientID and OrderID. The entries are not case-
sensitive; however, use of the period “.” and backslash “\” must be excluded from the ClientID and
OrderID entries.

8 110700_L

Client API Design 8,&

Client APl Programming Class Definitions
Rimage Client API usage breaks down into three groups of operations.
System-Related Operations Group

SystemManager is the main interface class for this group. This class allows you, the API user, to connect and
disconnect from the Messaging Server (eMS). It also allows you to set and get system-wide parameters, such
as synchronous calling timeout.

Server-Related Operations Group

ServerManager is the main interface class for this group. This class allows you to listen for server events,
control server states, and set and get server parameters.

Order-Related Operations Group

OrderManager is the main interface class for this group. This class allows you to submit orders, listen for order
status, cancel orders, etc.

110700_L 9

System Management 8,&

System Management

Before you can use the Rimage system, the client application must connect to the Messaging Server (eMS)
using the SystemManager object. A client application connects to only one Messaging Server (eMS) at a time.
The client application is free to disconnect and connect to a Messaging Server running on another computer at
any time. After the client application connects to a Messaging Server, it can set up a listener to listen for
system events, such as exceptions.

Connect to the System

SystemManager.Connect()

This overloaded method allows the client to connect to the Messaging Server either on the localhost or
anywhere on the network by specifying a host IP address and port. The ClientID passed into this method must
be unique in the system. This uniqueness is the responsibility of the client and is enforced by the messaging
system. If the host IP address and port are not passed into the connect() method, connection is attempted to a
broker running on the local host with a default port. After the client process is connected to the Messaging
Server all the other system or order related operations are possible.

SystemManager.Disconnect()

When the client session is over, a SystemManager.disconnect() method is called. Once this method has been
called, all further operations throws an exception.

Sample Code
Start/End Session using .NET with C#

//Start session.

// This is the first method to call before any other in the API,
// typically when the client application initializes.
CSystemManager. Initialize();

if (bLocal)

{

// Connect locally with ClientlD of “Clientl”,

// host “localhost” (default), port “4664” (default).
CSystemManager .Getlnstance() .Connect(“Clientl™);

}

else

{

// Connect with clientld of “Clientl”, host “Computerl”,

// port“4664™.

CSystemManager .GetlInstance() .Connect(“Clientl”, “Computerl”,”4664”);
}

//End session.

// No operations can be done with the APl after this method is
// called.

SystemManager .Getlnstance() -Disconnect();

// This method needs to be the very last method called in the API

// typically when the client application is shutting down.
CSystemManager.Terminate();

110700_L 11

&(Rimage APl Programming Guide

Start/End Session using Java

//Start session.
it (bLocal)

{
// Connect locally with ClientlD of “Clientl”,
// host “localhost” (default), port “4664” (default).
SystemManager .getlnstance() .connect(“Clientl™);
}
else
{
// Connect with ClientlD of “Clientl”, host “Computerl”,
// port “4664”.
SystemManager .getlnstance() .connect(“Clientl”, “Computerl”,”4664’);
}

//End session.
// No operations can be done with the APl after this method is called.
SystemManager .getiInstance() .disconnect();

Start/End Session using C++

12

//Start session.

if(bLocal)

{

// Connect locally with ClientlD of “Clientl”,

// host “localhost” (default), port “4664” (default).
SystemManager : :getlnstance()->connect(“Clientl”);

}

else

{

// Connect with ClientlID of “Clientl”, host “Computerl”, port “4664”.
SystemManager : :getlnstance()->connect(“Clientl”, “Computerl”,”4664");
}

//End session.

// No operations can be done with the APl after this method is called.
SystemManager : :getlnstance()->disconnect();

// Clean up memory.
OrderManager: :removelnstance();
SystemManager : :removelnstance();

110700_L

System Management 8,&

Start/End Session using C
/*Start session.*/
if(bLocalMessaging)

{

/* Connect locally with ClientID of “Clientl”, host “localhost” (default), port
“4664” (default).*/

RCA_connect(“Clientl™);
}

else

{

/* Connect with ClientlD of “Clientl”, host “Computerl”, port “4664”.*/
RCA_connectEx(“Clientl”, “Computerl”,”4664");

}

/*End session.*/

/* No operations can be done with the APl after this method is called.*/

RCA_disconnect();

Start/End Session using VB 6

- Note: Rimage recommends the use of the .NET API for VB.NET.

“ Start session.

“ Declare the functions.

Public Declare Function RCA_connect Lib "RmClient_7_3 n_3.dIl" _
(Byval clientld As String) As Integer

Public Declare Function RCA_connectEx Lib "RmClient_7_3 n_3.dlI" _
(Byval clientld As String, _
ByVal host As String, _
ByVal port As String) As Integer

Dim ret As Integer

“ Connect locally with client “clientl_VB”.

ret = RCA_connect('clientl_VB")

“ End session.

“ Declare the functions.

Public Declare Function RCA_disconnect Lib "RmClient_7_3 n_3.dIlI" () As Integer

Dim ret As Integer

“ No operations can be done with the APl after this method is called.
ret = RCA_disconnect();

110700_L 13

&(Rimage APl Programming Guide

Listen for System Events

SystemManager.listenForSystemStatus(SystemListener)

This method allows the client process to receive information about system-wide events. The listener class
argument provides four callback methods while listening for system events:

SystemListener.onSystemStatus()

This callback method is called whenever a Production Server publishes a message consisting of an XML
instance of either the AlertDialog.DTD or the ErrorDialog.DTD. This method also receives any future additions
or changes to system type messages.

- Note: This callback is deprecated, instead use ServerEventListener.onServerAlert().
SystemListener.onSystemException()

This callback method is called if there is a problem with the messaging system, a connection broken event for
example. There is no XML passed into this method because the only errors are errors of connection to the
Broker.

- Note: The client application should go into a reconnect loop once the
SystemListener.onSystemException() callback method is received. It could take up to a minute for the
client application to reconnect once the connection has been reestablished.

SystemListener.onClusterCreated()

This callback method is called if a new cluster is created through an administration tool.
SystemManager.onClusterDeleted()

This callback method is called if a cluster is deleted through an administration tool.
SystemManager.removeSystemListener()

This callback method allows the client to stop receiving the system status messages.

Sample Code

Listen for System Events using .NET with C#
// Start listening.
// Class that will receive system status.
public class MySystemListener : ISystemListener

{
public void OnSystemException(SystemException e)
{
Console_WriteLine('"--- System Exception');
Console_WriteLine(e);
}
public void OnClusterCreated(String cluster, Int serverType)
{
Console_WriteLine('"--- Cluster Created");
Console_WriteLine(cluster);
}
public void OnClusterDeleted(String cluster, Int serverType)
{

Console_WriteLine("--- Cluster Deleted");

14 110700_L

System Management 8,&

Console_WriteLine(cluster);

}

}
// Set up the system listener.

MySystemListener systemListener = new MySystemListener();
CSystemManager.Getlnstance() .ListenForSystemStatus(systemListener);
// Stop listening.

// We are done listening for system status.

CSystemManager .Getlnstance() -RemoveSystemListener();

Listen for System Events using Java
// Start listening.
// Class that will receive system status.
public class MySystemListener implements SystemListener

{

public void onSystemException(SystemException e)

{
System.out.printIn(""\n--- System Exception');
System.out.printin(e.getMessage());
e.printStackTrace();

b

public void onClusterCreated(String cluster, int serverType)

{
System.out.printIn(''\n--- Cluster Created");
System.out.printin(cluster);

b

public void onClusterDeleted(String cluster, int serverType)

{
System.out.printIn(C’'\n--- Cluster Deleted™);
System.out.printin(cluster);

}

public void onSystemStatus(String xmlSystemStatus)

{
// The onSystemStatus method is deprecated — use
//ServerEventListener.onServerAlert.
System.out.printIn(""\n--- System Status');
System.out.printIn(xmlSystemStatus);

}

¥

// Set up the system listener.
MySystemListener systemListener = new MySystemListener ();
SystemManager .getlnstance() . listenForSystemStatus(systemListener);

// Stop listening.

// We are done listening for system status.
SystemManager .getlnstance() -removeSystemListener();

110700_L 15

&(Rimage APl Programming Guide

Listen for System Events using C++

// Start listening.
// Class that will receive system status.
class MySystemListener : public SystemListener
{
void onSystemStatus(LPCTSTR xmlSystemStatus);
void onClusterCreated(LPCTSTR cluster, int serverType);
void onClusterDeleted(LPCTSTR cluster, int serverType);
void onSystemException(SystemException* €);
};
void MySystemListener: :onSystemStatus(LPCTSTR xmlSystemStatus)
{
// The onSystemStatus method is deprecated — use
// ServerEventListener::onServerAlert.
printfF(""\n--- System Status');
printf (xmlSystemStatus);
}
void MySystemListener::onSystemException(SystemException* e)
{
printf(""\n--- System Exception'™);
e->printMessage();
e->printStackTrace();
}
void MySystemListener::onClusterCreated(LPCTSTR cluster, int serverType)
{
printf "\n--- Cluster Created");
printf(cluster);
¥
void MySystemListener::onClusterDeleted(LPCTSTR cluster, int serverType)
{
printf("\n--- Cluster Deleted");
printf(cluster);
b
// Set up the system listener.
MySystemListener systemListener;
SystemManager : :getlnstance()->listenForSystemStatus(&systemListener);
// Stop listening.
// We are done listening for system status.
SystemManager : :getlnstance()->removeSystemListener();

Listen for System Events using C

16

/* Start listening. */
/* Callback function to receive system status notifications. */
void CALLBACK systemStatusCallback(LPTSTR xmlSystemStatus)
{
printfF('"\n--- System Status');
printf (xmlSystemStatus);
}

/* Callback function to receive new cluster notifications. */

110700_L

System Management 8,&

void CALLBACK clusterCreatedCallback(LPTSTR cluster)
{
printf '"\n--- Cluster Created");
printf(cluster);
}
/* Callback function to receive deleted cluster notifications. */
void CALLBACK clusterDeletedCallback(LPTSTR cluster)
{
printfF(''\n--- Cluster Deleted");
printf(cluster);
}
/* Callback function to receive system error notifications. */
void CALLBACK systemExceptionCallback(LPTSTR error)
{
printf(""\n--- System Exception™);
printf(error);
}
/* Set up to listen for system status. */
RCA_listenForSystemStatus(systemStatusCal lback, clusterCreatedCallback,
clusterDeletedCal lback, systemExceptionCallback);
/* Stop listening. */
/* We are done listening for system status. */
RCA_removeSystemListeners();

Listen for System Events using VB 6

- Note: Rimage recommends the use of the .NET API for VB.NET.
“ Start listening.
“ Declare the functions.

Public Declare Function RCA_listenForSystemStatusBstr Lib
"RmClient_7_3 n_3.dIl"_

(Byval systemStatusCallback As Long,_
ByVal clusterCreatedCallback As Long,
ByVal clusterDeletedCallback As Long,
ByVal systemExceptionCallback As Long) As Integer
“ Declare callback functions.
Public Function systemExceptionCallback(ByVal error As String) As Long
MsgBox "Error : * & error
End Function

Public Function systemStatusCallback(ByVal systemStatus As String) As Long
Debug.Print '"System status is " & systemStatus
End Function

Public Function clusterCreatedCallback(ByVal cluster As String) As Long
Debug.Print ""Created cluster is " & cluster
End Function

Public Function clusterDeletedCallback(ByVal cluster As String) As Long
Debug.Print "Deleted cluster is " & cluster
End Function

110700_L 17

&(Rimage APl Programming Guide

“ Set up to listen for system status.

ret = RCA_listenForSystemStatusBstr(AddressOf systemStatusCallback,
AddressOf clusterCreatedCallback,

AddressOf clusterDeletedCallback,

AddressOf systemExceptionCal lback)

“ Stop listening.

“ Declare the functions.

Public Declare Function RCA_removeSystemListeners Lib "RmClient_7_3_n_3.d11" O
As Integer

Dim ret As Integer
“ We are done listening for system status.
ret = RCA_removeSystemListeners()

18 110700_L

Server Management 8,&

Server Management

Server management through the Client API consists of asynchronous and synchronous portions:

Asynchronous — Information that the servers send to the Client API. For example, notification of server
configuration and server states.

Synchronous — Requests that the caller sends to the server and the replies that the server sends back.
The following two sections describe listening for server events and synchronous server methods in detail and
provide code samples for reference.

Listening for Server Events

ServerManager.listenForServerEvents(ServerEventListener)

This method allows the client process to receive information about the servers that are active, becoming
active, or shutting down on the network. The ServerEventListener object passed into this method is called
when any of the above occurs. The information passed into the ServerEventListener.onServerActive() method
is in the form of an XML document (string), conforming to one of the following DTDs:

ProductionServerConfiguration DTD

ImageServerConfiguration DTD

BridgeServerConfiguration DTD

AlertDialog DTD

ErrorDialog DTD
The rest of the methods take a single string whose value is the ServerID of the server that is changing states.
ServerManager.removeServerEventListener()
This method allows the client to stop receiving the above messages.

Sample Code

Listen for Server Events using .NET with C#
// Start listening.
// Class that will receive server notifications.
public class MyServerListener : 1ServerEventListener

{

public void OnServerActive(String xmlServerInfo)

{
Console_WriteLine('"--- Active Server Information');
Console_WriteLine(xmlServerinfo);

}

public void OnServerStartPending(String serverld)

{
Console_WriteLine('--- Start Pending Server 1d");
Console_WriteLine(Server 1d);

}

public void OnServerPause(String serverld)

{

Console._WriteLine('--- Pause Server 1d");

110700_L 19

&(Rimage APl Programming Guide

20

Console_WriteLine(serverld);

}

public void OnServerResume(String serverld)

{

Console_WriteLine(''--- Resume Server 1d");
Console_WriteLine(serverld);

}

public void OnServerPausePending(String serverld)

{
Console_WriteLine('--- Pause Pending Server Id ');
Console_WriteLine(serverld);

}

public void OnServerShutdownPending(String serverlid)

{
Console_WriteLine(''--- Shutdown Pending Server 1d");
Console_WriteLine(serverld);

}

public void OnServerShutdown(String serverlid)

{
Console_WriteLine(''--- Shutting down Server 1d");
Console._WriteLine(serverld);

}

public void OnServerAlert(String xmlDialog)

{
Console_WriteLine("'--- Server Dialog™);
Console._WriteLine(xmlDialog);

}

public void OnServerDialogAcknowledged(String serverld, String dialogld)
{
Console._WriteLine(''--- Server Dialog Acknowledged');
Console_WriteLine(serverld + “, “ + dialogld);
}
void onServerStartupMessage(String serverld, String message)
{
Console._WriteLine('"--- Server Startup message');
Console_WriteLine(serverld + “: *“ + message);

}
}

// Set up the server listener.

MyServerListener serverListener = new MyServerListener();
CServerManager.Getlnstance() .ListenForServerEvents(serverListener);
// Stop listening.

// We are done listening for servers.

CServerManager.Getlnstance() -RemoveServerEventListener();

110700_L

Server Management 8,&

Listen for Server Events using Java
// Start listening.
// Class that will receive server notifications.
public class MyServerListener implements ServerEventListener

{

public void onServerActive(String xmlServerlinfo)

{
System.out.printIn(""\n--- Active Server Information™);
System.out.printin(xmlServerinfo);

}

public void onServerStartPending(String serverld)

{
System.out.printIn(C'\n--- Start Pending Server ID");
System.out.println(serverid);

}

public void onServerPause(String serverld)

{
System.out._printIn('"\n--- Pause Server ID");
System.out.println(serverlid);

}

public void onServerResume(String serverld)

{
System.out._printIn('"\n--- Resume Server ID");
System.out.println(serverlid);

}

public void onServerPausePending(String serverld)

{
System.out.printIn('"\n--- Pause Pending Server 1d");
System.out.println(serverlid);

}

public void onServerShutdownPending(String serverlid)

{
System.out.printIn('"\n--- Shutdown Pending Server 1d");
System.out.printin(serverld);

}

public void onServerShutdown(String serverld)

{
System.out.printIn(""\n--- Shutting down Server 1d");
System.out._printin(serverld);

}

public void onServerAlert(String xmlDialog)

{
System.out._printIn('"\n--- Server Dialog");
System.out._printin(xmlDialog);

}

public void onServerDialogAcknowledged(String serverld, String dialogld)

{
System.out.printIn(''\n--- Server Dialog Acknowledged™);

110700_L 21

&(Rimage APl Programming Guide

System.out.printIn(serverld + “, “ + dialogld);

}

void onServerStartupMessage(String serverld, String message)
{
System.out._printIn(’'--- Server Startup message');
System.out._printin(serverld + “: “ + message);
}
}

// Set up the server listener.

MyServerListener serverListener = new MyServerListener();
ServerManager .getlnstance() . listenForServerEvents(serverListener);
// Stop listening.

// We are done listening for servers.

ServerManager .getlnstance() -removeServerEventListener();

Listen for Server Events using C++

22

// Start listening.
// Class that will receive server notifications.
class MyServerListener : public ServerEventListener
{
void onServerActive(LPCTSTR xmlServerlInfo);
void onServerStartPending(LPCTSTR serverld);
void onServerPause(LPCTSTR serverld);
void onServerPausePending(LPCTSTR serverld);
void onServerResume(LPCTSTR serverld);
void onServerShutdownPending(LPCTSTR serverld);
void onServerShutdown(LPCTSTR serverld);
void onServerAlert(LPCTSTR xmlDialog);
void onServerDialogAcknowledged(LPCTSTR serverld);
void onServerStartupMessage(LPCTSTR serverld, LPCTSTR message);
};
void MyServerListener::onServerActive(LPCTSTR xmlServerInfo)
{
printfF("\n--- Active Server Information™);
printf(xmlServeriInfo);

}

void MyServerListener::onServerStartPending(LPCTSTR serverld)
{
printf(''\n--- Start Pending Server 1d");
printf(serverid);
}
void MyServerListener: :onServerPause(LPCTSTR serverld)
{
printf("'\n--- Pause Server 1d");
printf(serverlid);
}

void MyServerListener: :onServerResume(LPCTSTR serverld)

{

printf("'\n--- Resume Server 1d");

110700_L

Server Management &

printf(serverlid);
}

void MyServerListener: :onServerPausePending(LPCTSTR serverld)

{
printf("\n--- Pause Pending Server 1d");

printf(serverlid);
}

void MyServerListener::onServerShutdownPending(LPCTSTR serverld)

{
printf(""\n--- Shutting down Pending Server 1d");

printf(serverlid);
}
void MyServerListener: :onServerShutdown(LPCTSTR serverld)
{
printf("\n--- Shutting down Server 1d™);
printf(serverld);
}
void MyServerListener::onServerAlert(LPCTSTR xmIDialog)
{
printf("\n--- Server Dialog");
printf(xmlDialog);
}

void MyServerListener:: onServerDialogAcknowledged(LPCTSTR serverld, LPCTSTR
dialogld)

{
printf("\n--- Dialog Acknowledged ');
printf(dialogld);
}
void MyServerListener:: onServerStartupMessage(LPCTSTR serverld, LPCTSTR
message)
{
printf("'\n--- Server Startup message ');
printf(message);
}

// Set up the server listener.

MyServerListener serverListener;

ServerManager: :getlnstance()->listenForServerEvents(&serverListener);
// Stop listening.

// We are done listening for servers.

ServerManager: :getlnstance()->removeServerEventListener();

110700_L 23

&(Rimage APl Programming Guide

Listen for Server Events using C

/* Start listening. */
/* Callback function to receive active server notifications. */
void CALLBACK serverActiveCallback(LPTSTR xmlServerlInfo)
{

printf("\n--- Active Server™);

printf(xmlServerinfo);
}
/* Callback function to receive server shutdown notifications. */
void CALLBACK serverShutdownCallback(LPTSTR serverld)
{

printf(""\n--- Shutdown Server');

printf(serverlid);
}
/* Set up to listen for servers. */
RCA_listenForServers(serverActiveCallback, serverShutdownCallback);
/* Stop listening. */
/* We are done listening for servers. */
RCA_removeServerListeners();

Listen for Server Events using VB 6

24

Note: Rimage recommends the use of the .NET API for VB.NET.
“ Start listening.
“ Declare the functions.

Public Declare Function RCA_listenForServersBstr Lib "RmClient_7_3 n_3.dIl"_

(ByVal serverActiveCallback As Long,_
ByVal serverShutdownCallback As Long) As Integer
“ Declare callback functions.

Public Function serverActiveCallback(ByVval xmlServerActive As String) As_ Long

Debug.Print "Active server is ' & xmlServerActive
End Function

Public Function serverShutdownCallback(ByVal server As String) As Long
Debug.Print 'Shutdown server is " & server
End Function

“ Set up to listen for servers.

ret = RCA_listenForServersBstr(AddressOf serverActiveCallback, AddressOf
serverShutdownCal Iback)

“ Stop listening.
“ Declare the functions.

Public Declare Function RCA_removeServerListeners Lib_ "RmClient_7_3 n_3.

As Integer

Dim ret As Integer

“ We are done listening for servers.
ret = RCA_removeServerListeners()

dinrQ

110700_L

Server Management 8,&

Synchronous Server Methods

The caller of the Client API can start, restart, and stop any of the Rimage servers when running as a Windows
Service and using the following ServerManager methods directly:

ServerManager.startService()
ServerManager.restartService()
ServerManager.stopService()

The caller can also choose to take advantage of the Production and Imaging server Status and Control
protocols. The Status and Control protocols allow the caller to request and receive server status, server
parameters, current orders in process, etc. The protocols also allow the caller to set server parameters,
acknowledge server dialogs, control server state, etc. For more information about the Production and Imaging
server protocols, refer to ‘Server status and control’ on page Error! Bookmark not defined..

The Status and Control protocols are accessed through the ServerManager.executeServerRequest() method.
This method accepts an XML string conforming to one of the following DTDs:

ProductionServerRequest DTD
ImageServerRequest DTD

The ServerManager. executeServerRequest() method returns an XML string conforming to one of the
following DTDs:

ProductionServerReply DTD
ImageServerReply DTD
The methods described above are synchronous.

& Tip: Use the SystemManager.setSynchronousTimeout() method to change the timeout value of all the
synchronous methods in the Client API.

Sample Code

Server Methods using .NET with C#
// Start/Stop/Restart services.
// Start Production Service on the local computer.
CServerManager.Getlnstance() -StartService(*““computerl”,
CSystemManager . PRODUCT ION_SERVER_TYPE) ;

// Stop Imaging Service on the local computer.
CServerManager.Getlnstance() .StopService(“computerl™,
CSystemManager . IMAGE_SERVER_TYPE) ;

// Restart Messaging Service on the local computer.

// NOTE: This will break the current Messaging Server(eMS) connection.
CServerManager.Getlnstance() -RestartService(“computerl”,
CSystemManager .MESSAGING_SERVER_TYPE) ;

// Execute Server Request.

// Create a request XML string conforming to either the
// ProductionServerRequest dtd or ImageServerRequest dtd.

String request = CreateServerRequest();

110700_L 25

&(Rimage APl Programming Guide

// Call the server to execute the request. Get back a reply XML string

// conforming to either the ProductionServerReply dtd or
ImageServerReply
// dtd.

String reply =

CServerManager .Getlnstance() .ExecuteServerRequest(“computerl PS01”,

request);

// Parse the reply using any XML parser.
ParseServerReply(reply);

Server Methods using Java

26

// Start/Stop/Restart services.

// Start production service on the local computer.
ServerManager .getlnstance() -startService(“computerl™,
SystemManager . PRODUCTION_SERVER_TYPE) ;

// Stop Imaging Service on the local computer.
ServerManager .getlnstance() -stopService(“computerl”,
SystemManager . IMAGE_SERVER_TYPE) ;

// Restart Messaging Service on the local computer.

// NOTE: This will break the current Messaging Server(eMS) connection.
ServerManager .getlnstance() -restartService(“computerl”,

SystemManager -MESSAGING_SERVER_TYPE) ;

// Execute Server Request.

// Create a request XML string conforming to either

// the ProductionServerRequest dtd or ImageServerRequest dtd.
String request = createServerRequest();

// Call the server to execute the request. Get back a reply XML
// string conforming to either the ProductionServerReply dtd or
// ImageServerReply dtd.

String reply =

ServerManager .getlnstance() .executeServerRequest(“computerl PS01”, request);

// Parse the reply using any XML parser.
parseServerReply(reply);

110700_L

Server Management 8,&

Server Methods using C++
// Start/Stop/Restart services.
// Start Production Service on the local computer.
ServerManager: :getlnstance()->startService(“computerl”,
SystemManager : : PRODUCTION_SERVER_TYPE) ;

// Stop Imaging Service on the local computer.
ServerManager : :getlnstance()->stopService(*““computerl”,
SystemManager : : IMAGE_SERVER_TYPE) ;

// Restart Messaging Service on the local computer.
// NOTE: This will break the current Messaging Server(eMS) connection.

ServerManager: :getlnstance()->restartService(“computerl™,
SystemManager : :MESSAGING_SERVER_TYPE) ;

// Execute Server Request.
// Create a request XML string conforming to either the
// ProductionServerRequest dtd or ImageServerRequest dtd.

std::string request = createServerRequest();

// Call the server to execute the request. Get back a reply XML string
// conforming to either the ProductionServerReply dtd or

// ImageServerReply dtd.

std::string reply =

ServerManager: :getlnstance()->executeServerRequest(“computerl PS01”,
request.c_str());

// Parse the reply using any XML parser.
parseServerReply(reply);

Server Methods using C
/* Execute Server Request. */
/* Create a request XML string conforming to either the
ProductionServerRequest dtd or ImageServerRequest dtd.*/

LPTSTR request = createServerRequest();

/* Call the server to execute the request. Get back a reply XML string
conforming to either the ProductionServerReply dtd or ImageServerReply
dtd.*/

LPTSTR reply = RCA_executeServerRequest(“computerl_PS01”, request);

/* Parse the reply using any XML parser. */
parseServerReply(reply);

/* Remove returned reply. */

RCA_removeServerResponse(reply);

110700_L 27

&(Rimage APl Programming Guide

Server Methods using VB 6

- Note: Rimage recommends the use of the .NET API for VB.NET.
“ Execute Server Request.
“ Declare the functions.
Public Declare Function RCA_executeServerRequestBstr Lib
"RmClient_7_3 n_3.dIl"_
(Byval server As String,_
ByVal request As String,_
ByVal responseCallback As Long) As Integer

“ Declare callback functions.

Public Function responseCallback(ByVal response As String) As Long
Debug.Print "Server response is " & response

End Function

“ Call a synchronous method.

ret = RCA_executeServerRequestBstr(“computerl_PS01”, request, AddressOf
serverActiveCal lback)

28 110700_L

Order Management 8,&

Order Management

A client application typically completes the following steps to connect to the Messaging Server and
then submit and manage orders. Refer to this process when using the Rimage client API to develop a
client application to the Rimage Publishing system:

Application Programming Flow Chart
0.Application startup
3
1.Connect with Messaging Server
3
2.Create XML string
3
3.Set up OrderDescription
(optional)
)
4.Submit ImageOrder
)
5.Listen for ImageOrder Status
)
6.Submit ProductionOrder
()
7.Listen for ProductionOrder Status
)
Repeat steps 2 through 7 as many times as needed
3
8.Application shutdown
3
9.Stop Listeners
3

10.Disconnect from Messaging Server

- Note: An additional step, Recovering Orders, may be required after reconnecting to Messaging
Server (eMS) if your client application shut down before order(s) were completed, and you used
OrderManager.submitDurableOrder() to submit the order(s). If this is the case, you can recover
order statuses that have not yet been received.

Submit Orders

After you are connected to the Rimage system you are free to begin submitting orders. You can submit one or
more orders to either Production Server or Imaging Server.

Use the OrderManager class to submit orders. Only one OrderManager object per application is required.
Either Production or Imaging orders can be submitted by reusing a single OrderManager object.

Use the OrderManager.getinstance() static method to create a single, internal object to use for
submitting, canceling, removing, and recovering orders.

110700_L 29

&(Rimage APl Programming Guide

When you submit an order you can also provide a listener object to receive periodic status messages for that
order. You can create a separate listener object for each order or create a single listener object to manage all
the orders your application submits.

Order Management Methods

One of the following methods is called:

OrderManager.submitOrder(XMLOrder, OrderStatusListener) returns an OrderDescription object. This
method returns immediately, it does not wait while the order is processed and completed.

OrderManager.submitDurableOrder(XMLOrder, OrderStatusListener) returns an OrderDescription
object.

OrderManager.submitOrder(OrderDescription, XMLOrder, OrderStatusListener)
OrderManager.submitDurableOrder(OrderDescription, XMLOrder, OrderStatusListener)
- Note: Rimage recommends using one of the first two signatures to submit orders.

The first two methods [OrderManager.submitOrder(XMLOrder, OrderStatusListener) and
OrderManager.submitDurableOrder(XMLOrder, OrderStatusListener)] are overloaded to contain two
parameters.

The last two methods [OrderManager.submitOrder(OrderDescription, XMLOrder, OrderStatusListener) and
OrderManager.submitDurableOrder(OrderDescription, XMLOrder, OrderStatusListener)] are overloaded to
contain three parameters.

It is completely up to the user of this APl which signatures to use. The last two methods require the caller to
build the OrderDescription object, which in turn requires its values to match values in the XML order. The first
two methods do not place that burden on the API user, but use a little more resources to parse the order.

OrderDescription Parameter

- Note: The OrderStatusListener parameter has been deprecated for the last two methods.

The first required parameter is an OrderDescription, which is an object containing summary information for
the order.

XMLOrder Parameter

The XMLOrder parameter is the order itself represented in an XML string. This XML document conforms to
either ProductionOrder.DTD or ImageOrder.DTD.

OrderStatusListener

The third parameter, OrderStatusListener is optional. This allows the caller to listen for the status information
on the order just submitted. If this parameter is omitted (or is null), the order is still submitted, but status is
not propagated back to the client.

The durable versions of these methods allow for recovery of an order’s statuses in the event of a client
application shutdown before an order is completed. If this is the case, then calling
OrderManager.recoverOrder() in combination with OrderManager.receiveRecoveredStatuses() during
application restart recovers all the missed order statuses.

30 110700_L

Order Management 8,&

OrderDescription

The OrderManager class has two signatures for each of the submitOrder() and submitDurableOrder()
methods:

1. Asignature that takes an OrderDescription object as well as the XML order string as parameters.

2. Asignature that takes only the XML order string as a parameter and returns a reference to an
OrderDescription object.

- Note: Rimage recommends option 2. This is a simpler call to make for the caller, because the caller
doesn’t have to create an OrderDescription object before the method call. However in some
circumstances, clients require creation of an OrderDescription object prior to the call.

When an order is submitted to the system with an OrderDescription object, the values in the OrderDescription
must match the values in the XML order itself. This section describes how data in the XML order document is
related to the data in the OrderDescription object. This section does not apply if you are using the methods
that return these objects.

- Note: All values are case sensitive.

OrderDescription Object as a Return Value

If the OrderDescription object is not one of the parameters, it is derived from the XML order string and
returned to the caller. This object should be used in all subsequent OrderManager method calls related to this
order.

- Note: In alanguage like C++, the caller is responsible for deleting the OrderDescription object by calling
OrderManager::removeOrderDescription() after it is no longer needed. In a language like Java, the
garbage collector deletes the object.

There are two types of OrderDescription objects that you actually use:
1. ImageOrderDescription for imaging orders.

2. ProductionOrderDescription for production orders.

Example 1:

OrderManager .getlnstance() -submitDurableOrder(orderDesc, XMLOrder String,
orderStatusListener)

Example 2:

orderDesc = OrderManager.getlnstance() -submitDurableOrder(XMLOrder String,
orderStatusListener);

Cancel an Order in Process

While the order is in process, the user can cancel the order. There are two options for canceling an order in
process:

1. OrderManager.cancelPendingOrder(OrderDescription)
2. OrderManager.cancelOrder(OrderDescription)

The OrderManager.cancelPendingOrder() method tries to remove a pending order from a cluster. If the server
has not picked up the order for processing, this method will succeed.

- Note: Remember to use the same OrderDescription object to cancel an order in process that was used to
submit the order.

110700_L 31

&(Rimage APl Programming Guide

The OrderManager.cancelOrder() method first tries to remove a pending order — an order that is still waiting
to be processed. If the pending order cannot be removed, a cancel request is sent to the server that is
processing the order, and return false to the caller. The server attempts to cancel the processing of the order
and send an appropriate status, which the client receives via the OrderStatusListener.onStatus() method.

Example: OrderManager .getlInstance() .cancelOrder(orderDescription,true);

- Note: If the OrderManager.cancelOrder() method returns true, the order has been removed from the
cluster because no server has begun work on it. If OrderManager.cancelOrder() method returns false,
then you have to wait for a status message from either the Imaging Server or the Production Server that is
currently processing the order. The OrderManager.cancelOrder() method sends the cancel request to the
appropriate Imaging Server or Production Server.

After the order has been processed, failed, or canceled, the user is required to call
OrderManager.stopListeningForOrder() method. This stops listening for the order status related to this order
only — all other submitted orders are not affected.

Example: OrderManager -getlInstance() -stopListeningForOrder(orderDescription);

-~ Note: You must call stopListeningForOrder for a particular Order ID before you can reuse that Order ID
since the system uses Order ID as a means of directing statuses for the order. Calling the
OrderManager.stopListeningForOrder() method effectively tells the system that the client is finished with
this order. The final order statuses returned are COMPLETED, FAILED, or CANCELED.

Recover Orders

- Note: Order recovery should be planned during the design of the application. If order recovery is
required, then only the OrderManager.submitDurableOrder() method should be used to submit orders.

There are cases when a client program crashes or is shut down before all orders are finished processing. The
next time the client program starts up it should call OrderManager.recoverOrder(OrderDescription,
OrderStatusListener) for each order previously submitted with OrderManager.submitDurableOrder() method.
After OrderManager.recoverOrder() has been called for all orders to be recovered,
OrderManager.receiveRecoveredStatuses() must be called. This allows the caller to receive order statuses
while the client application is down.

Example:
OrderManager .getlnstance() -recoverOrder(orderDescription,
orderStatusListener); OrderManager.getlnstance().receiveRecoveredStatuses();

OrderDescription Base Class

Elements and attributes that are common to ProductionOrder and ImageOrder are represented in the
OrderDescription base class. The following applies to both ProductionOrder and ImageOrder.

OrderDescription XML Attribute

AttributeElement

OrderDescription.setOrderld() Set to the “Orderld” attribute value of ProductionOrder or ImageOrder
element.

OrderDescription.setClientld() Set to the "Clientld" attribute value of ProductionOrder or ImageOrder
element.

OrderDescription.setOriginator() Set to the "Originator" attribute value of ProductionOrder or
ImageOrder element.

OrderDescription.setPriority() Set to the "Priority" attribute value of ProductionOrder or ImageOrder
element.

32 110700_L

Order Management 8,&

OrderDescription XML Attribute

AttributeElement

OrderDescription.setTargetCluster() Set to the "Cluster" attribute of Target element.
OrderDescription.setTargetServer() Set to the "Server" attribute of Target element.

ImageOrderDescription Sub Class

The Image order description requires 3 set parameter methods to be called. Most of the parameters have
defaults, but you still must make sure that these parameters have identical values in the XML order document.
The required Image order set parameters are:

OrderlID, ClientID, Originator — no default values assigned
Priority, TargetCluster, TargetServer — default values assigned

- Note: Currently, there is no additional data in an ImageOrderDescription other than what is in the base
class.

ProductionOrderDescription Sub Class

The Production order description requires 13 set parameter methods to be called. Most of the parameters
have defaults, but you still must make sure that these parameters have identical values in the XML order
document. The required Production order set parameters are:

OrderID, ClientID, Originator - no default values assigned

TargetCluster, Action, MediaType, MediaSize, TargetLine, InOutinputBin, OutputMailSlot, Copies,
TargetServer, and Priority — default values assigned

Submitting a ProductionOrder requires information in addition to what is already contained in the
OrderDescription base class.

OrderDescription AttributeElement XML Attribute
ProductionOrderDescription.setCopies() Set to the "Copies" attribute value of ProductionOrder
element.
ProductionOrderDescription.setTargetLine() Set to the "Line" attribute of Target element.
ProductionOrderDescription.setMediaType() Set to the "Type" attribute of Media element.
ProductionOrderDescription.setMediaSize() Set to the "Size" attribute of Media element.
ProductionOrderDescription.setinOutinputBin() Set to the "InputBin™ attribute of InOut element.
ProductionOrderDescription.setOutputMailslot () Set to the "OutputMailslot" attribute of InOut element.

110700_L 33

&(Rimage APl Programming Guide

OrderDescription AttributeElement

XML Attribute

ProductionOrderDescription.setAction()

Set to the type of the first action found in a
ProductionOrder XML document.

- If first action element is Record — setAction() to

“Record”.

- If first action element is Read — setAction() to
“Read”.
If first action element is Label — setAction() to
“Label”.
If first action element is Collate — setAction() to
“Collate”.
If first action element is Copy — setAction() to
HCOpyH.

- If first action element is Destroy — setAction() to
“Destroy”.

ProductionOrderDescription.setLabelPresent()

Set to boolean “true” or “false” to signify if the disc
is to be printed on.

Streaming

As of PSS 7.2 Production Server (ePS) is able to stream image data (image file or a Rimage Powerlmage file)

directly from the computer hosting the Imaging Server (elS).

The client application programmer needs to add information to the ImageOrder and ProductionOrder XML
orders to facilitate this process.

Changes to ImageOrder

Set the “Output” element’s “Type” attribute to “Powerlmage”. This ensures the fastest Image file creation

possible. Powerlmage file is resolved during the streaming process to the Production Server.

- Note: This value can be set to “Normal” however optimal performance will not be achieved.

Changes to ProductionOrder

34

streaming and performance may not be optimal.

Set the “ProductionOrder” element’s “ImagerHost” attribute to the name of the computer hosting the
Imaging Server which produced the image.

Set the “ProductionOrder” element’s “Externallmager” attribute to “true” since all imaging is done by a
component other than the client application.

Set the “ProductionOrder” element’s “Logonld” attribute to the currently logged in Windows User’s ID.

- Note: If the above information is not entered in the ProductionOrder, the order is processed without

110700_L

Order Management 8,&

Spanning

As of PSS 7.3 Rimage software is able to record a single set of data on multiple discs, producing a spanned disc
set.

The client application programmer needs to add information to the ImageOrder and ProductionOrder XML
orders to facilitate this process. There are also additional XML orders involved in spanning: OrderSet and
OrderSetStatus.

Process Flow of a Spanned Disc Set
1. AnlImageOrder is submitted to the Imaging Server specifying whether spanning is allowed.

2. Imaging Server produces multiple Image files for the specified data. As the Image file is being written to
disc, the Imaging Server sends out ImageOrderStatus XML to the client. The order status specifies the
total number of volumes (or discs) involved in this order, the current volume being worked on (1, 2, n),
and the name of the current volume Image file.

- Note: The size of each Image file in the set is determined by the Image size specified in the
ImageOrder, which relates to the Media (CDR, DVDR, etc.) for this spanned disc set.

3. Assoon as the first ImageOrderStatus comes back with the information on the total number of volumes,
an OrderSet XML can be created and submitted through OrderManager just like any other order. The
OrderSet includes a list of ProductionOrders that are involved in the creation of this spanned disc set.

4. Once an Image file for one of the volumes in the set is completed, a ProductionOrder for this Image file
can be submitted. This pattern is repeated for each volume in the set.

- Note:

Each ProductionOrder in the spanned disc set specifies one of the Image files as Data Tracks.
Therefore there are as many ProductionOrders as there are image files in the set.

Production Server makes sure the discs in the spanned disc set are produced in the correct order
-1, then 2, etc.

5. Production Server sends out statuses for the spanned disc set as a whole (OrderSetStatus XML) as well as
statuses for the individual ProductionOrders (ProductionOrderStatus XML).

6. Once the entire spanned disc set is produced, cancelled, or failed, the client application needs to call
OrderManager.stopListeningForOrder() for every order involved in the set: ImagerOrder, OrderSet, and
multiple ProductionOrders.

Changes to ImageOrder

Set the “Output” element’s “PowerSpan” attribute to “true”. This tells the Imaging Server that spanning is
allowed.

Interpreting ImageOrderStatus

There are three new IMPLIED fields in the Status element related to a spanned disc set. These fields tell the
client application how many volumes are in the set, which volume is being worked on now, etc. The new fields
are:

“SpanTotalVolumes” — indicates the number of volumes in the spanned disc set.
“SpanVolume” — inidicates the volume elS is currently working on. Numbering starts with “1”.

“SpanVolumeName” — indicates the file name of the volume elS is currently working on. This is the
filename to be specified in the “WriteTrack” element’s “Filename” attribute of the ProductionOrder.

110700_L 35

&(Rimage APl Programming Guide

OrderSet (New)

Fill the attributes of the “OrderSet” element with the same information normally specified for any type of
order.

Add an “OrderReference” element for each ProductionOrder in this spanned disc set.

- Note: Typical naming convention for orders in a spanned disc set is: <orderSetld> for OrderSet and
<orderSetld>_000x for each ProductionOrder in the spanned disc set.

Fill the “ProductionOrderSet” element with the same information normally specified for a ProductionOrder.
This element exists to facilitate Production Server allocation of resources.

Changes to ProductionOrder

Set the “ProductionOrder” element’s “ReferencedSet” attribute to the order ID of the OrderSet submitted
previously.

Set the “WriteTrack” element’s “Filename” attribute to one of the Image files returned in the
ImageOrderStatus XML.

The rest of the ProductionOrder remains the same.

Order Management Sample Code
Order Management using .NET with C#

// Submit Production order.
// Image order management is almost identical to Production order
// management and is not covered here.
// Create the XML Production order document using any of the available
// XML parsers.
String xmlOrder = createProductionOrder();

// Submit order and get an OrderDescription object back.
// 1T recovery is not required, use a submitOrder() signature.

CProductionOrderDescription orderDescription =
COrderManager .Getlnstance() .SubmitDurableOrder(xmlOrder, orderListener);

// OR

// Create a ProductionOrderDescription object. Most of the parameters are
// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

CProductionOrderDescription orderDescription = new
CProductionOrderDescription();

orderDescription.Orderld = “ProductionOrder01”;
orderDescription.Clientld = "PO_Client_ID";
orderDescription.Originator = "PO_ORIGINATOR";

// Class that will receive order status notifications.
public class MyOrderListener : I0rderStatusListener

{
public void OnStatus(String xmlOrderStatus)

{

// Check for the state of your order here, using an XML parser.

36 110700_L

Order Management &

// This code will run in a client APl managed thread different from
// the thread that submitted the order.

Console_WriteLine(''--- Order status');
Console_WriteLine(xmlOrderStatus);
}

¥
// Submit the Production order.

// If recovery is not required, use submitOrder() signature.
MyOrderListener orderListener = new MyOrderListener();

COrderManager .Getlnstance() .SubmitDurableOrder(orderDescription, xmlOrder,
orderListener);

// Order is being processed by the server and MyOrderListener is

// receiving statuses.

// If we want to cancel the order for some reason.

// If the order is cancelled by the server, the next status received
// by MyOrderListener will be CANCELLED.

COrderManager .Getlnstance() -CancelOrder(orderDescription);

// Stop listening for order status.

// Final order status received by MyOrderListener is either

// COMPLETED, FAILED, or CANCELLED.

// We need to stop listening for this order’s status.

COrderManager .Getlnstance() -StopListeningForOrder(orderDescription, true);

// Recover orders.

// 1T your client application shuts down before order(s) were completed,
// and you used OrderManager.submitDurableOrder() to submit the order(s),
// then you can recover order statuses that were not received previously.
// The sequence for recovering orders is as follows:

// 1. Call OrderManager.RecoverOrder() for each order to be recovered.
// 2. Call OrderManager.ReceiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each
// order you want to recover.

CProductionOrderDescription orderDescription = new
CProductionOrderDescription();

orderDescription.Orderld = “TestOrder™;
orderDescription.Clientld = “TESTCLIENT”;
orderDescription.Originator = “RimageSample”;

MyOrderListener orderListener = new MyOrderListener();
COrderManager .Getlnstance() -RecoverOrder(orderDescription, orderListener);

// Once all the orders have been recovered, call the following to start
// receiving order statuses.
COrderManager .Getlnstance() .ReceiveRecoveredStatuses();

110700_L

37

&(Rimage APl Programming Guide

Order Management using Java

// Submit Production order.

// Image order management is almost identical to Production order

// management, and is not covered here.

// Create the XML Production order document using any of the available
// XML parsers.

String xmlOrder = createProductionOrder(..);

// Submit order and get an OrderDescription object back.
// 1T recovery is not required, use a submitOrder() signature.

ProductionOrderDescription orderDescription =
OrderManager .getlnstance() .submitDurableOrder(xmlOrder, orderListener);

// OR
// Create a ProductionOrderDescription object. Most of the parameters are

// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

ProductionOrderDescription orderDescription = new ProductionOrderDescription();
orderDescription.setOrderld(“ProductionOrder01™);
orderDescription.setClientld(""PO_Client_ID");

orderDescription.setOriginator("'PO_ORIGINATOR™)

// Class that will receive order status notifications
public class MyOrderListener implements OrderStatusListener

{
public void onStatus(String xmlOrderStatus)
{
// Check for the state of your order here, using an XML parser.
// This code will run in a client APl managed thread different from
// the thread that submitted the order.
System.out.printIn("*\n--- Order status™);
System.out.printIn(xmlOrderStatus);
}
}

// Submit the Production order.
// IT recovery is not required, use a submitOrder() signature.
MyOrderListener orderListener = new MyOrderListener();

OrderManager .getlnstance() -submitDurableOrder(orderDescription, xmlOrder,
orderListener);

// Order is being processed by the server and MyOrderListener is

// receiving statuses.

// Cancel order.

// I we want to cancel the order for some reason.

// IT the order is cancelled by the server, the next status received
// by MyOrderListener will be CANCELLED.

OrderManager .getlnstance() .cancelOrder(orderDescription);

// Stop listening for order status.

// Final order status received by MyOrderListener is either

38 110700_L

Order Management &

// COMPLETED, FAILED, or CANCELLED.
// We need to stop listening for this order’s status.
OrderManager .getlnstance() -stopListeningForOrder(orderDescription);

// Recover orders

// If your client application shuts down before order(s) were completed,
// and you used OrderManager.submitDurableOrder() to submit the order(s),
// then you can recover order statuses that were not received previously.
// The sequence for recovering orders is as follows:

// 1. Call OrderManager.recoverOrder() for each order to be recovered.
// 2. Call OrderManager.receiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each
// order you want to recover.

ProductionOrderDescription orderDescription;
orderDescription.setOrderld(“ProductionOrder01™);
orderDescription.setTargetCluster(“DefaultProductionCluster™);
MyOrderListener orderListener = new MyOrderListener();

OrderManager .getilnstance() .recoverOrder(orderDescription, orderListener);

// Once all the orders have been recovered, call the following to start
// receiving order statuses.
OrderManager .getlnstance() -receiveRecoveredStatuses();

Order Management using C++

// Submit Production order.

// Image order management is almost identical to Production order

// management, and is not covered here.

// Create the XML Production order document using any of the available
// XML parsers.

LPCTSTR xmlOrder = createProductionOrder(..);

// Submit order and get an OrderDescription object back.

// 1T recovery is not required, use submitOrder() signature.
ProductionOrderDescription* orderDescription =

OrderManager: :getlnstance()->submitDurableOrder (xmlOrder, &orderListener);
// OR

// Create a ProductionOrderDescription object. Most of the parameters are
// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

ProductionOrderDescription orderDescription;
orderDescription.setOrderld(“ProductionOrder01™);
orderDescription.setClientld(""PO_Client_ID");
orderDescription.setOriginator("'PO_ORIGINATOR™)
orderDescription.setTargetCluster(“DefaultProductionCluster™);

// Class that will receive order status notifications.
class MyOrderListener : public OrderStatusListener

{

110700_L 39

&(Rimage APl Programming Guide

void onStatus(LPCTSTR xmlOrderStatus);
}:
void MyOrderListener: :onStatus(LPCTSTR xmlOrderStatus)
{
// Check for the state of your order here, using an XML parser.
// This code will run in a client APl managed thread different from
// the thread that submitted the order.

priﬁtf("\n——— Order status'™);
printf(xmlOrderStatus);

}

// Submit the Production order.
// IT recovery is not required, use submitOrder() signature.
MyOrderListener orderListener;

OrderManager: :getlnstance()->submitDurableOrder(&orderDescription, xmlOrder,
&orderListener);

// Order is being processed by the server and MyOrderListener is
// receiving statuses.

// Cancel order.

// If we want to cancel the order for some reason.

// If the order is cancelled by the server, the next status received
// by MyOrderListener will be CANCELLED.

OrderManager: :getlnstance()->cancelOrder(&orderDescription);

// Stop listening for order status.

// Order is either COMPLETED, FAILED, or CANCELLED

// We need to stop listening for this order’s status

OrderManager: :getlnstance()->stopListeningForOrder(&orderDescription) ;

// 1f OrderDescription is returned from submitOrder()
OrderManager: :getlnstance()->removeOrderDescription(orderDescription);

// Recover orders.

// 1T your client application shuts down before order(s) were completed,
// and you used OrderManager.submitDurableOrder() to submit the order(s),
// then you can recover order statuses that were not received previously.
// The sequence for recovering orders is as follows:

// 1. Call OrderManager::recoverOrder() for all the orders to be recovered.
// 2. Call OrderManager::receiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each
// order you want to recover.

ProductionOrderDescription orderDescription;
orderDescription._setOrderld(“ProductionOrder01”);
orderDescription._setTargetCluster(“DefaultProductionCluster™);

40 110700_L

Order Management &

MyOrderListener orderListener;
OrderManager: :getlnstance()->recoverOrder(&orderDescription, &orderListener);

// After recoverOrder() has been called for each order to be recovered,
// call the following to initiate recovery for all orders and to start
// receiving order statuses.

OrderManager: :getlnstance()->receiveRecoveredStatuses();

Order Management using C

/* Submit Production order.*/

/* Image order management is almost identical to Production order management,
and is not covered here.*/

/* Create the XML Production order document using any of the available XML
parsers.*/

LPCTSTR xmlOrder = createProductionOrder();
/* Allocate memory for the structure.*/
RCA_production_order_description rcaPO0D;
/* Callback function that will receive order status notifications.*/
void CALLBACK orderStatusCal lback(LPTSTR xmlOrderStatus)
{
/* Check for the state of your order here, using an XML parser.*/
/* This code will run in a Client APl managed thread different from
the thread that submitted the order.*/

priﬁtf("\n——— Order status'™);
printf(xmlOrderStatus);

}

/* Submit the Production order.*/
/* 1f recovery is not required, use submitOrder() signature.*/

/* rcaPOD is filled in with values from the order. Use it in all subsequent
calls related to this order.*/

RCA_submitDurableProductionOrderBstr(&rcaPOD, xmlOrder, orderStatusCallback);

/* Order is being processed by the server and orderStatusCallback is receiving
statuses */

/* Cancel order. */

/* IT we want to cancel the order for some reason. */

/* IT the order is cancelled by the server, the next status received
by MyOrderListener will be CANCELLED. */
RCA_cancelProductionOrder(&rcaP0OD, true);

/* Stop listening for order status */

/* Order is either COMPLETED, FAILED, or CANCELLED.

/* We need to stop listening for this order’s status */
RCA_stopListeningForProductionOrder(&rcaPOD);

110700_L 41

&(Rimage APl Programming Guide

/* Recover orders */

/* IT your client application shut down before order(s) were completed,
and you used OrderManager.submitDurableOrder() to submit the order(s),
then you can recover order statuses that were not received previously_*/

/* The sequence for recovering orders is as follows: */

/* 1. Call RCA_recoverProductionOrder() or RCA_recoverlmageOrder() for each
order to be recovered. */

/* 2. Call RCA_receiveRecoveredStatuses() to initiate order recovery and to
start receiving order statuses.*/

/* Using the same mechanisms to create RCA_production_order_description and
callback function as in the above section, call the following for each order
you want to recover.*/

RCA_production_order_description rcaPOD;

rcaPOD.orderld = malloc(128);

rcaPOD.targetCluster = malloc(128);
strcpy(rcaPOD.orderld, “ProductionOrderl™);
strcpy(rcaPOD.targetCluster, “DefaultProductionCluster™);
RCA_recoverProductionOrder(&rcaPOD, orderStatusCallback);

/* Once all the orders have been recovered, call the following to start
receiving order statuses.*/

RCA_receiveRecoveredStatuses();

/* Free order description memory.*/
free(rcaPOD.orderld);
free(rcaPOD. targetCluster);

Order Management using VB 6

42

Note: Rimage recommends the use of the .NET API for VB.NET.
“ Submit Production order

Image order management is almost identical to Production order
management, and is not covered here.

Declare the structure
Public Type RCA_production_order_description

orderld As String * 128 " This field cannot be NULL

clientld As String * 128 " This field is optional and can be NULL

originator As String * 128 " This field is optional and can be NULL

targetCluster As String * 128 " This field cannot be NULL

targetServer As String * 128 " This field is optional, if null then any

" server in the cluster will process this

order

priority As String * 32 " Default for this field is
PRIORITY_MEDIUM

action As String * 32 " Default for this field is ACTION_RECORD

mediaType As String * 32 " Default for this field is MT_CDR

mediaSize As String * 32 " Default for this field is MS_120

targetLine As String * 32 " Default for this field is TL_ANY

copies As String * 32 " Default for this field is 1

110700_L

Order Management &

inOutlnputBin As String * 32 " Default for this field is 10B_ANY
outputMailslot As String * 32 " Default for this field is 0

End Type

“ Declare the functions

Public Declare Function RCA_submitProductionOrderBstr Lib
“"RmClient_7_3 n_3.dIlI" _

(ByRef orderDesc As RCA production_order_description, _
ByVal xmlOrder As String, _
ByVal orderStatusCallback As Long) As Integer

Public Declare Function RCA_cancelProductionOrder Lib "RmClient_7_3 n_3.dIlI" _
(ByRef orderDesc As RCA_production_order_description, _
ByVal abortCurrent As Boolean) As Integer

Public Declare Function RCA_stopListeningForProductionOrder Lib
“"RmClient_7_3 n 3.dIlI"™ _

(ByRefT orderDesc As RCA production_order_description) As Integer

“ Declare callback function for order statuses

Public Function orderStatusCallback(ByVal orderStatus As String) As Long
"On Error Resume Next
Debug.Print orderStatus
orderStatusCallback = 0

End Function

“ Create a RCA_production_order_description structure.

“ The values of this structure will be filled in during the
“ submitProductionOrderBstr() call

Dim pod As RCA_production_order_description

Dim ret As Integer

Dim xmlProductionOrder As String

“ Create the XML Production order document using any of the available XML
parsers.

xmIProductionOrder = createProductionOrder(..)

“ Submit the Production order.
“ IT recovery is not required, use submitOrder() signature

ret = RCA_submitProductionOrderBstr(pod, xmlProductionOrder, AddressOf
orderStatusCal Iback)

“ Order is being processed by the server and orderStatusCallback is receiving
statuses

“ Cancel order.

“ 1If we want to cancel the order for some reason.

IT the order is cancelled by the server, the next status received
“ by MyOrderListener will be CANCELLED.

ret = RCA_cancelProductionOrder(pod, True)

110700_L 43

&(Rimage APl Programming Guide

“ Stop listening for order status

“ Order is either COMPLETED, FAILED, or CANCELLED

“ We need to stop listening for this order’s status
ret = RCA_stopListeningForProductionOrder(pod)

Recover orders.

IT your client application shut down before order(s) were completed,

“ and you used OrderManager.submitDurableOrder() to submit the order(s),
then you can recover order statuses that were not received previously.
The sequence for recovering orders is as follows:

“ 1. Call RCA_recoverProductionOrderBstr() or RCA_recoverlmageOrderBstr() for
each order to be recovered.

“ 2. Call RCA_receiveRecoveredStatuses() to initiate order recovery and to
start receiving order statuses.

“ Declare the function
Public Declare Function RCA_recoverProductionOrderBstr Lib
“"RmClient_7_3 n 3.dIlI"™ _
(ByRef orderDesc As RCA production_order_description, _
ByVal callback As Long) As Integer

Public Declare Function RCA receiveRecoveredStatuses Lib "RmClient_7_3 n_3.dII"
(O As Integer

“ Using the same mechanisms to create RCA_production_order_description and
callback function as in the above section, call the following for each order
you want to recover.

Dim pod As RCA_production_order_description
Dim ret As Integer

pod.orderld = "ProductionOrder001_VB"
pod.targetCluster = "DefaultProductionCluster™
ret = RCA_recoverProductionOrderBstr(&rcaPOD, orderStatusCallback)

“ Once all the orders have been recovered, call the following to start
receiving order statuses.

ret = RCA_receiveRecoveredStatuses()

44 110700_L

Server Status and Control Protocol 8,&

Server Status and Control Protocol

This section describes the protocol used to communicate with Production Server to obtain status information,
modify parameter settings, control orders, and carry out Production Server operations. These operations
include sending a response to any dialog that the Production Server may generate in the processing of orders.

This section also describes the protocol used to communicate with the Imaging Server to obtain status
information, modify parameter settings, control orders, and carry out Server operations.

The XML-based Production and Imaging server Status and Control protocols are a means for applications to do
any of the following:

Get server status
Get server parameters

Set server parameters

-~ Note: Not all parameters are changeable via the Status and Control protocol. For example, the
ServerID is a read only parameter.

Get a list of orders currently in process by a server
Cancel or suspend a specific order
Control a server state (Pause, Resume, Shut down, etc.)

The Server Status and Control protocol is realized through using the ServerManager.executeServerRequest
method in combination with the following DTDs:

ProductionServerRequest DTD
ProductionServerReply DTD
ImageServerRequest DTD

ImageServerReply DTD

Server Command Synchronization

There is a set of commands for the Production Server and a set for the Imaging server. There is no restriction
on which user may send commands. If a command requires a password, the encrypted password is included in
the request XML and is verified by the server before the command is run. These commands are described as
elements with supporting attributes in ProductionServerRequest and ImageServerRequest DTDs. Many
commands are identical for the two servers, i.e. Get server parameters. In these cases, the elements in the
two DTDs are the same. Most of the commands are synchronous. When a client makes a request, the
response from the Production or Imaging Server is typically immediate or takes place within a few seconds.

ServerManager.executeServerRequest method returns an XML string that conforms to either the
ProductionServerReply or the ImageServerReply DTD. There is also a set of replies that are the same
between the two servers. In these cases, the elements in the two DTDs are the same.

The FlashUpload command, which may take longer to complete, requires the client to wait until the
operation completes.

The SystemManager.setSynchronousTimeout method is used to change the timeout value, the value is
given in milliseconds.

110700_L 45

&(Rimage APl Programming Guide

The PauseServer, ResumeServer, and StopServer operations are implemented as asynchronous
commands. The normal server response is immediate and the response message indicates that these
operations are in progress. Because these operations can take a while to complete, clients using this
server receive notification through ServerEventListener.onServerxxx() methods when the pause or
resume operation is complete. In the meantime, any user can make requests for Server status that return
the state of the Server. Because of the nature of the pause and resume operations, the Server locks out a
small number of commands until the pause or resume operation has completed. These commands are
also disabled when the Server is processing a StopServer request or during initialization in which the
Server is in the ‘Start Pending’ state.

The commands that are locked out during pause or resume operations are:
CancelOrder
ChangeOrder
ResetInputBins
EnableDevice
SetParameter
FlashUpload

StopServer

Password Protection on Commands

Some server commands are password protected. Each Server has its own password to use any of the password
protected commands. When there is more than one Server in a configuration, the Servers can have the same
password or they can all be different. A password may consist of up to 20 characters. The default password is
a null password, meaning that it is not initially set and has a length of zero (or 0 characters). The protocol uses
the SetServerPassword command to permit a client application to set the password. When the Server
password is set, this password is required for performing protected operations on the Server.

When used in an XML message, passwords must be encoded. Clients that send passwords must encrypt the
password prior to sending it.

Production Server Commands

When Production Server processes either the EnableDevice or the ResetinputBins commands, Production
Server may send a completed response even though the operation on the device involved has not completed.
The device cannot accept another command unless it is ready, so there may be a delay before the next
operation begins.

For the Production Server to respond to any request, it must first be online (successfully connected to the
Messaging Server).

- Note: Typically, the Server is online before it has completely initialized, this may cause some commands
to return an error until the Server has completed initialization.

46 110700_L

Server Status and Control Protocol 8,%

Command Summary

Command Description Needs Password Command Reply
GetServerStatus Gets information No Server Password Set = (True or
about Server’s False)
operational state and Remaining days for trial use of a
system settings feature returned.
Overall counts of produced discs
and rejected discs.
Command line switches that are
in use.
GetParameterSettings Gets list of No Sends the contents of the
parameters and their element
values ProductionServerParameters in
the ProductionServerReply.dtd
GetOrderList Obtains a list of No OrderState = IN_PROCESS or

currently running (or
suspended) orders on
the Server for all
users

CANCELLING

OrderStage = BUSY, WAITING,
RECORDING,PRINTING

CancelOrder

Cancels an order

Yes, if client updates
someone else’s order

ChangeOrder

Suspends, resumes,
or changes quantity
of an order

Yes, if client updates
someone else’s order

SetDialogAction

This command is used
to respond to either
an alert dialog or an
error dialog that is
posted by the
Production Server.

No

COMPLETED

GetSessionLog

Obtains a list of the
most recent log
messages posted by
the Server

No

Returns most recent log
messages posted since startup
of the client, up to 200 entries.

ResetinputBins

Causes Server to reset
input bins for a
specified autoloader
that has any bhin set
up for both input and
output.

No

COMPLETED

EnableDevice

Re-enables a
autoloader, recorder,
or printer

Yes

COMPLETED

SetParameter

Modifies one or more
parameter settings

Yes

Returns an error for invalid
requests.

PauseServer

Stops order scanning;
Pause mode for

Yes

IN_PROCESS

110700_L

47

&(Rimage APl Programming Guide

Command Description Needs Password Command Reply
Service

ResumeServer Starts order scanning; | Yes IN_PROCESS
Run mode for Service

StopServer Stops order scanning, | Yes
stops order

processing, and shuts
down Server. In
process orders are
canceled.

FlashUpload Uploads firmware to Yes
autoloader,
recorders, or printers

SetServerPassword Initially sets, changes, | Only to change or reset
or resets the Server password
password

VerifyServerPassword Confirms if the No

current password
provided is still valid
or not.

Command Reply
All command replies contain the following information:

Serverld — Unique ID assigned to the Production Server. This has the format <computer_name>_<base
id>. The <base id> is the name assigned to the Server containing up to 4 characters.

ClientID — Name of the client user that sent the original command. Each client ID is unique on the
Messaging Server.

CommandState — Refers to the state of the command at the time of the response. The only state that

indicates command success is the COMPLETED state. The FAILED state indicates that the request failed,
the command may or may not have run. The details of any failure are in the error code and message. If
the command or request is started but not immediately completed, the CommandState is IN_PROCESS.

CommandErrorCode — A number ranging from 0 — 999 indicating the error status of the command. A
value of 0 is returned if the command has the COMPLETED state. The code has a non-zero value when the
state is FAILED.

CommandErrorMessage — Text indicating what the error message is. It is present if the
CommandErrorCode is non-zero.

ReplyTimestamp —Text in the form of “CCYY-MM_DD HH:MM:SS” indicating the time the Server
generated a reply.

Automation — The state of Server operation.

48 110700_L

Server Status and Control Protocol 8,&

Automation State

Description

START_PENDING

Server is in initialization.

RUNNING

Server is scanning for orders and/or processing orders.

PAUSED

Server is not scanning for new orders; it has suspended any orders that were
processing.

PAUSE_PENDING

Server is not scanning for more orders; it is in the process of suspending any active
orders.

STOP_PENDING

Server is not scanning for more orders; Recordings in process are being canceled; The
system is in the process of shutdown.

Command Details

This section discusses Production Server request commands and is intended to clarify some of the less obvious
details about data processed or returned by the Imaging Server.

GetServerStatus — Obtains information about Server software settings and configuration.

GetServerStatus is used to obtain information about the software, how the software is configured to run,
and some configuration information. Most of the settings are not directly configurable by the client, but

some dynamic status information is available on the Server and attached devices. This command returns
overall counts of produced (good) discs and rejects. As an option, device status is available which contain
data on loader bin levels and printer disc cumulative throughput.

One item returned by this request is whether or not the Server password is set. When the server
password attribute is true, the Server requires a server password to be submitted with some commands.
When a password is not set, then a password is not used with any request.

One option available with this request is information pertaining to license activation. If a feature has a
license file but is not activated, the number of remaining days for trial use of the feature is returned.

A less-used option is to send a flag with this request to get the command line switches that are in use.
These switches are sometimes used by QA and development personnel doing diagnostic work on the
Server.

GetParameterSettings — Obtains a complete list of parameters and their settings.

The Server replies by sending the contents of the element ‘ProductionServerParameters’ in the
ProductionServerReply.dtd.

GetOrderList — Obtains a list of all currently running (or suspended) orders on the Server.

This command provides current data on all of the orders being processed by the Production Server. The
orders in the list are not in any particular sequence. The OrderID and ClientID for each order are returned.
These values are needed whenever making a request to cancel or to update an order.

Order State — If the Server has resources available to process an order, the normal state of the order is
'IN_PROCESS'. If an action is taken to cancel an order, the state remains as 'IN_PROCESS' but the extended
order stage (OrderStageEx) goes to CANCELLING. After the order has completed the cancellation process,
it is removed from the order list.

Order Stage — This attribute of an order indicates the predominant activity that best describes what is
happening with the order at the Server.

Two stages to note are:

110700_L 49

&(Rimage APl Programming Guide

50

1. WAITING: means that the disc(s) are waiting for a physical resource on the autoloader before they
can go to the next stage. This may occur for an extended period if an order loses its resources due to
a hardware malfunction or during a crash recovery when there may be several orders running, but
not enough resources to run them all at once.

2. BUSY: usually means that the disc is in a transition from one stage to another (such as RECORDING to
PRINTING).

CancelOrder — Cancels an active order.

This command allows a client to cancel an order that the client has submitted without a password. The
protocol allows the choice to either stop the recording immediately (AbortRecordingsinProcess = true), or
to stop after the current discs being recorded are finished (AbortRecordingsinProcess = false).

The Server checks if the client that is making the request matches the ClientID that is associated with the
order. If the clients do not match, then the Server verifies that the message contains the Server password
(provided this password has been set).

- Note: Both the OrderID and ClientID attributes are used to properly identify orders. This information
is obtainable with the GetOrderList command.

ChangeOrder — Suspends, resumes, or changes quantity of an order.

When changing the number of discs to produce in an order, the requested number may be more or less
than the number in the order. However, the quantity specified must exceed the sum of the discs already
produced in the order plus the number of discs currently in recording (Discs (new quantity) > {Discs
completed + Discs recording}.)

The Server checks to see if the client that is making the request matches the ClientID that is associated
with the order. If the clients do not match, then the Server verifies that the message contains the Server
password (provided this password has been set).

- Note: Both the OrderID and ClientID attributes are used to properly identify orders, and this
information is obtainable with the GetOrderList command.

SetDialogAction — Sends a selection a user has made to a dialog.

This command is used to respond to either an alert dialog or an error dialog that is posted by the
Production Server. There is no restriction on which client can respond. Normally, with an error dialog, the
condition must be corrected at the affected autoloader before answering the dialog. After the Server
receives this command, it returns the COMPLETED status and performs the specified action.

- Note: The completed status is simply the Server receiving a course of action, rather than a repeat of
the action that caused the error. If the course of action produces another error, then another dialog
is posted.

GetSessionLog — Obtains a list of the most recent log messages posted by Server.

This request causes the Server to return its most recent messages (that it normally logs into a file) that
have been posted since startup to the client. Up to 200 entries may be returned. The client can specify a
value for the number of entries, but if the actual number is less than the value specified, then only the
actual log entries are returned (up to a maximum of 200).

Each log entry has a Timestamp and a Messageld associated with it. The timestamp has the format "CCYY-
MM_DD HH:MM:SS”. The message ID is the numeric value that is assigned to the message. A value of zero
for the message ID indicates that the log entry is an informational message, although informational
messages can also have non-zero IDs.

ResetInputBins — Causes the Server to perform the reset input bins operation on a specified autoloader.
This command applies to only autoloaders that have any bin configured for both input and output.

110700_L

Server Status and Control Protocol 8,&

The bins on a specified autoloader are essentially reinitialized. It is recommended that the client
application confirm with the local operator that the bins have been emptied and refilled as required.
When the Server receives this request, it immediately proceeds with the reset operation regardless of the
state that the autoloader is in.

-~ Note: This command typically returns COMPLETED immediately, although the physical operation can
take a few seconds.

EnableDevice — Enables a disabled autoloader, recorder, or printer.

This command allows a user to put a disabled autoloader, recorder, or printer back online. It is always
necessary to specify the number of the autoloader. The Server assigns numbers to autoloaders during
initialization. The first autoloader is numbered as 1. Recorder numbers are assigned by the Server and
refer to the physical locations of the recorders on the autoloader. Both recorders and printer are
numbered starting at 1.

-~ Note: This command typically returns COMPLETED immediately, although the physical operation can
take a measurable amount of time.

SetParameter — Modifies one or more parameter settings.

This command allows a user to change Production Server settings. As viewed in the ‘Setting’ sub element
of the element SetParameter, a single command can be used to change multiple settings on the Server or
on one or more autoloaders that are connected. When a request is made to modify more than one
parameter setting, all of the requested settings must be valid for the request to be completed. If any of
the requested settings is invalid, the request returns an error, and no settings are changed.

PauseServer — Stops order scanning and brings the Production Server to a Paused automation state.

The Server returns an immediate response. The CommandState normally is IN_PROCESS. Once the
command is started, the Server goes into the Pause Pending state until it reaches the Pause state. The
command fails if the Server is in either the Start Pending or Stop Pending state.

ResumeServer — Resumes order scanning and brings the Production Server to a Running automation
state.

If any orders are suspended, the orders are resumed. The Server returns an immediate response. The
CommandsState normally returns as IN_PROCESS. However, the Server normally should reach the running
state within a few seconds. The Server must already be in the Paused state for this command to succeed.

StopServer — Shuts down the Server.

The Server shuts down when it receives this command. Any orders in process are canceled and no new
orders are picked up. The client has the option of aborting any recording in progress or allowing the
current discs in recording to finish.

FlashUpload — Uploads the firmware to the autoloader, recorders, or printers.

No matter what type of device is specified for uploading flash firmware, the Server always attempts to
update all similar devices on a system. If the autoloader firmware is being uploaded, then all the
autoloaders that match the firmware can be updated. As with the EnableDevice command, the first
autoloader is numbered as 1.

Before running this command, the client application should ensure that the firmware file has been copied
to the Rimage system folder. The Production Server accesses the file using the full file path that is
specified in the request.

- Note: The Server must be in a Paused state before this command can be run. This command can take
more than three minutes to complete. It does not return until the operation has succeeded or failed.
The client application should expect to wait until completion.

110700_L 51

&(Rimage APl Programming Guide

SetServerPassword — Initially sets, changes, or resets the password of the Server.

Initially, the Server password is not set. This command allows any client to set the password so that the
Server must receive this password with any password-protected commands that follow. The fact that the
password is set on the Server is known by the response to the GetServerStatus command.

The Server password must be 0 to 20 characters in length. The encryption algorithm is provided on page
75.

VerifyPassword — Checks to see if the entered password is correct.
This command is used by client applications to determine if a string of characters matches the Server’s
stored password.

Imaging Server Commands

Before the Imaging Server can respond to any request, it must be online. This means that it has completed its
initialization process and has successfully connected to the Messaging Server.

Command Summary

Command Description Needs
Password
GetServerStatus Obtains information about Server’s operational state and No
system settings
GetParameterSettings Obtains list of parameters and their values No
GetOrderList Obtains the job order of the currently processing order, if No
there is one
CancelOrder To cancel the current order Yes, if client
updates someone
else’s order
GetSessionLog Obtains a list of the most recent log messages posted by No
Server
SetParameter Modifies one or more parameter settings Yes
PauseServer Stops order scanning; Pause mode for Service Yes
ResumeServer Starts order scanning; Run mode for Service Yes
StopServer Stops order scanning, stops order processing, and shuts Yes
down Server
SetServerPassword Initially sets, changes, or resets the Server password Only to change or
reset password
VerifyServerPassword Used to confirm if the current password that was provided No
is still valid or not

52

110700_L

Server Status and Control Protocol 8,&

Command Reply
All responses contain the following information. See the DTD for the exact format.

Serverld — Unique ID assigned to the Production Server. This has the format <computer_name>_<base
id>; the <base id> is the name up to 4 characters that is assigned to the Server. The Imaging Server uses
IS01 by default, but may be changed during installation.

ClientID — The name of the client user that sent the original command. It is unique on the Messaging
Server.

CommandState — The state of the command at the time of the response. The only states that indicates
command successes are the COMPLETED or IN_PROCESS states. The FAILED state indicates that the
request failed. The command may or may not have run. The details are in the error code.

CommandErrorCode — A number indicating the error status of the command. A value of 0 is returned if
the command has the COMPLETED state. The code has a non-zero value when the state is FAILED.

CommandErrorMessage — Text indicating what the error message is. It is present if the
CommandErrorCode is non-zero.

ReplyTimestamp — Has the format CCYY-MM-DD HH:MM:SS. It indicates the time that the reply was sent.

Automation — The current run state of the Server. Possible automation states are StartPending, Running,
Paused, PausePending, or StopPending.

The actual state of the Imaging Server is in the Automation attribute. Automation states are:

Automation Description

StartPending The Server has loaded and is preparing to run. This state usually only lasts a few seconds or
less.

Running Server is scanning for orders and/or processing orders

Paused Server is not scanning for new orders; it has suspended any jobs that were processing

PausePending Server in not scanning for new orders; it is finishing up processing orders

StopPending Server is not scanning for new orders; Orders in process are ending; The system starts to
shutdown

110700_L 53

&(Rimage APl Programming Guide

Command Details

This section discusses Imaging Server request commands.

54

GetServerStatus — Obtains information about Server’s operational state and system settings.
GetOrderList —Obtains a list of all currently running orders on the Server.

The Imaging Server currently processes only one order at a time. This command returns the current order,
if there is one. A future version may work on several jobs concurrently.

This command provides current data on all of the orders that are being processed by the Imaging Server.
The orders in the list are not in any particular sequence. The OrderID and ClientID are both needed to
identify the order. When an operation is done with the ChangeOrder command, these values are
necessary.

Order State — If the Server is working on a job, it has the state of ACTIVE. If an action is taken to cancel an
order, the order has the state of CANCELLING for a few seconds until the job is cleaned up and the output
image file deleted. Following this, the order is removed from the order list.

CancelOrder — Cancels the current order.
The command allows a client to cancel the order that is currently being processed.

The Server checks if the client making the request matches the ClientID associated with the order. If the
clients do not match, then the Server verifies that the message contains the Server password (provided
this password has been set).

- Note: Both the OrderID and ClientID attributes are used to properly identify orders. This information
is obtainable with the GetOrderList command.

GetSessionLog — Obtains a list of the most recent log messages posted by Server.

This request causes the Server to return its messages (that it normally logs into a file to the clients) that
have been posted since startup. Up to 200 entries are returned. The client can specify a value for the
number of entries, but if the actual number is less, then only the actual number of log entries is returned,
up to a maximum value of 200.

PauseServer — Stops order scanning and brings the Imaging Server to a Pause mode when it runs as a
Service.

The Server returns an immediate response. The CommandStatus normally is IN_PROCESS. When the
command is started, the Server goes into the Pause Pending state until it reaches the Pause state.

It is a command error to attempt a Pause command while the state is Pause Pending.
SetServerPassword — Initially sets, changes, or resets the password of the Server.

Initially, the Server password is not set. This command allows any client to set the password so that the
Server then must have the password before it performs certain commands. The fact that the password is
set on the Server is known by the response to the GetServerStatus command.

Any string of characters may be used, including Asian Unicode. The encryption algorithm is provided on
page 75.

110700_L

Deployment 8,&

Deployment

Java Deployment

Build Information
The Client API .jar files have been compiled for target Java VM version 1.4 or higher.
Required Files

The .jar files, Import statements and Properties files required by Java in the Class path to compile and run are
listed below.

Required JAR Files Required Import Statements Optional Property Files
AdminApi.jar import com.rimage.client.api.*; log.properties

RmClient 8 0 n_1.jar import com.rimage.client.api.exception.*; rmapi_log.properties
RmRmsApi_1 3 n_1jar import com.rimage.msg.exception.*;

RmRmsClient_1 3 n_1.jar | import com.rimage.exception.*;

test.jar

CommonApp.jar

.NET Deployment

Build Information
The Rapid Integration API has been compiled using Visual Studio 2008 and .NET Version 3.5.

Rimage.Client.Api assembly implements the.NET API. This assembly can be used in any application
written in a .NET supported language.

This assembly is strongly named, which among other things means that Common Run Time (CLR) takes the
Assembly version of this assembly into account at load time.

Required .NET Assembly Files

The following files are required in C#, VB.NET, or any other .NET project.

Installed by defaultin C:\Program Files\RimageSdk\ApiSdk\bin.
Rimage.Client._Api.dll

The rest of the file list is identical to the Unicode list in C++ Required Files and Folders section.

C/ C++/ VB 6 Deployment

Build Information

The Client API has been compiled using Microsoft Visual Studio 2008 (VC9) compiler. Rimage DLLs include their
version in the name of the file. The name/version has the following format:

<name>_<major>_<minor>_n_<interface>.dll

Major version is seldom incremented, and only if a Rimage system undergoes a significant architectural
change. For example, version 5.x to version 6.x — the Rimage system changed from file based to
messaging/XML based.

110700_L 55

&(Rimage APl Programming Guide

Minor version is incremented if a DLL is changed for a new release. Applications using this DLL need to be
rebuilt.

“n” represents an internal build/bug fix version for a specific minor version. The actual File version of the
dil has a number in place of “n”. For example if the dil is named RmClient_8 0 n_5.dll, the File version of
this dll could be 8.0.n.5.

Interface version represents iterations of the API itself. If the exported interface of the DLL itself is
changed, this version is incremented and the applications using this DLL needs to be rebuilt.

- Note: The _u option indicates Unicode versions; no _u indicates non-Unicode versions.
Required Linker Options
If your application is intended to run on Windows XP Service Pack 2, then do the following:

In Project Properties > Linker > Command Line > Additional options, enter /SAFESEH:NO.

- Note: This is a workaround for the Service Pack 2 Exception handling problem.

Required Files and Folders

The following files and directories are required in VB 6, C and C++ projects. Specify the paths and specify the
lib files (either Unicode or non-Unicode) as indicated.

Required DLL Files (Non-Unicode) Required DLL Files (Unicode)

Installed by default at: Installed by default at:

C:\Program Files\RimageSdk\ApiSdk\bin C:\Program Files\RimageSdk\ApiSdk\bin
and \bin (x64). and \bin (x64).

RmClient_8_0_n_5.dlIl RmClient_8 0 _n_5 u.dll

RmRms_1 3 n_1.dll RmRms_1 3 n_1.dll

Microsoft visual C++ 2008 SP1 Redistributable Pack is Required.

Required LIB Files (Non-Unicode) Required LIB Files (Unicode)

-~ Note: This section does not apply to VB -~ Note: This section does not apply to VB
deployment. deployment.

RmClient_8 0 _n_5_1ib RmClient_8 0 n_5 u.lib

Required Include Directories
- Note: This section does not apply to VB or .NET deployment.
Installed by default at:
C:\Program Files\RimageSdk\ApiSdk\include\client
C:\Program Files\RimageSdk\ApiSdk\include\exception
Required #include Statements
- Note: This section does not apply to VB or .NET deployment.
#include <ClientApilnclude.h> (must be specified in project settings for C++)

#include <ClientApi_C Include.h> (must be specified in project settings for C)

56 110700_L

Deployment 8,&

Optional files
rmapi_log.properties
Place this file in your application’s working folder to produce a Cient API log file. This file can be found at:

C:\Program Files\RimageSdk\ApiSdk\bin folder.

64 bit deployment
SDK 8.1 includes x86 and x64 dlls and libs.

File system location for x86 files:
C:\Program Files\RimageSdk\ApiSdk\bin and \lib

File system location for x64 files:
C:\Program Files\RimageSdk\ApiSdk\bin (x64) and \lib (x64)

110700_L 57

Appendix A — Sample Source Code Projects 8,%

Appendix A — Sample Source Code Projects

Rimage SDK install includes sample projects for working with the Rapid API. By default these projects are

placed in the C:\Program Files\RimageSdk\ApiSdk\Samples\ClientApi folder. The samples
are broken into Java, C++, and .NET (written in C#) samples.

110700_L 59

Appendix B — Sample XML Documents 8,%

Appendix B — Sample XML Documents

Image Order Samples

The examples in this section include:
XML ISO L2 with EditList Image Order
XML ISO L2 from Parent Folder Image Order
XML RockRidge Image Order

ISO L2 with Editlist Image Order

The example below shows an XML order including 1SO L2 with an EditList Image.

<?xml version="1.0" ?>
<I--Sample XML file generated by XML Spy v4.2 U (http://www._xmlspy.com)-->
<IDOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD"">
<ImageOrder

Priority="Normal"

Orderld="Projectl_I0"

Clientld="SOFTWARE4_QuickDiscJ"

Originator="SOFTWARE4 QuickDiscJ">
<Target Cluster="DefaultlmageCluster"™ Server="ANY"/>
<Format>

<PCMACFormat 1S0=""2" Apple="none" Joliet=""false" Rockridge="false"/>

<FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot=""true" ForceShort="false"

Versions="true" lgnoreBadFiles="false" CaseSensitive="false" Zip="false"
AllowBootableCD=""true"/>

</Format>
<Source>

<EditList EditListPath=""\\Mainserver\D_drive\tmp\test.edl"/>
</Source>

<Output Type="Normal' CDXA="false'" Postgap="true'" Size="74"
ImageFile=""\\Mainserver\D_drive\tmp\test._img"/>

<Rules CheckNames="false" AllowDirExt=""false'" CheckLevels="false"/>
<VolumeName/>
</ImageOrder>

ISO L2 from Parent Folder Image Order

The example below shows an XML order including ISO L2 image from the Parent folder.
<?xml version="1.0"?>
<I--Sample XML file generated by XML Spy v4.2 U (http://www.xmlspy.com)-->
<IDOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD">

<ImageOrder Orderld="101234" Clientld="ClientID" Originator="Tester"
Priority="Normal'>

<Target Cluster="DefaultlmageCluster'™ Server="ANY"/>
<Format>
<PCMACFormat 1S0=""2" Apple="none" Joliet="false" Rockridge="false"/>

<FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot="true" ForceShort="false" Versions="true" IgnoreBadFiles="false"
CaseSensitive="false" Zip="false" AllowBootableCD="true"/>

110700_L 61

& Rimage APl Programming Guide

</Format>
<Source>

<ParentFolder ParentFolderPath="c:\tmp\thumbnails"™ Destination="both"/>
</Source>

<Output ImageFile="c:\tmp\test.img" Type="Normal' CDXA="false"
Postgap=""true" Size="74"/>

<Rules CheckNames=""true' AllowDirExt="false" CheckLevels=""true"/>
<VolumeName VolName=""LabelTest"/>

<PVDInfo PVDSystem="System" PVDVolumeSet="VolumeSet" PVDCopyright="Copyright
Martin Nohr'™ PVDPublisher="Publisher" PVDPreparer="Preparer"
PVDApplication=""Application” PVDAbstract="Abstract"
PVDBibliography="Bibliography" PVDExpirationDate=""" PVDEffectiveDate=""
GMTOffset="-32"/>

</ImageOrder>
RockRidge Image Order

The example below shows an XML order including a RockRidge image.
<?xml version="1.0" ?>
<I--Sample XML file generated by XML Spy v4.2 U (http://www.xmlspy.com)-->
<IDOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD"">

<ImageOrder Orderld="101234" Clientld="ClientID" Originator="Tester"
Priority="Normal'>

<Target Cluster="DefaultlmageCluster"™ Server="ANY"/>
<Format>
<PCMACFormat 1S0="2" Apple="none" Joliet="false" Rockridge=""true"/>

<FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot=""true" ForceShort="false" Versions="true" IgnoreBadFiles="false"
CaseSensitive="false" Zip="false" AllowBootableCD="true"/>

</Format>
<Source>

<EditList EditListPath=""c:\tmp\test.edl" Destination="both"/>
</Source>

<Output ImageFile="c:\tmp\test.img" Type="Normal' CDXA="false"
Postgap=""true" Size="74"/>

<Rules CheckNames=""true" AllowDirExt="false" ChecklLevels="true"/>
<VolumeName VolName="'LabelTest"/>

<PVDInfo PVDSystem="System" PVDVolumeSet="VolumeSet" PVDCopyright="Copyright
Martin Nohr'™ PVDPublisher="Publisher"™ PVDPreparer="Preparer"
PVDApplication="Application” PVDAbstract="Abstract"
PVDBibliography="Bibliography" PVDExpirationDate=""" PVDEffectiveDate=""
GMTOffset="-32"/>

</ImageOrder>

62 110700_L

Appendix B — Sample XML Documents 8,&

Production Order Samples

This section includes examples of the following XML Production Order types:
XML Audio Production Order
XML Blue Book Production Order
XML Mode 1 Production Order
XML Print Only Production Order
XML Data Disc Production Order
These are provided in detail in the following section.

A sample Production Order DTD would take up to 125 lines or more to illustrate here. To simplify things,
Rimage XML DTDs make extensive use of defaults when defining a DTD. Rimage also ships “cookie cutter” XML
documents with the Messaging Server software to give customers a higher level starting point.

- Note: Itis the end user’s responsibility to validate the XML strings before sending the XML document.

The 125-line Production Order DTD example mentioned above is provided as a sample Production Order XML
document. It is actually an instance of the Production Order DTD and would occupy only 16 lines. It would look
like this:
<?xml version="1.0"?>
<IDOCTYPE ProductionOrder SYSTEM *"C:\Rimage\XML\ProductionOrder_1.14_dtd">
<ProductionOrder Orderld="POOrder_1" Clientld="kbtest" Originator=" "
Copies="1">
<Media Type="CDR"/>
<Target/>
<Action>
<Record>

<WriteTrack Filename="c:\rimage\cd-r_images\Order_1.img"
DeleteAfterRecording=""false'">

<Data Type="Model'>
<Volumeld volume_id="Mydisc'"/>
</Data>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SAQ0" Final="true"/>
</Record>
</Action>
<Action>
<Label Filename="myfirst_label">

<BTW Merge_Filename="c:\rimage\labels\merge.txt"
DeleteMergeFileOnCompletion=""true"/>

</Label>
</Action>
</ProductionOrder>

110700_L 63

&(Rimage APl Programming Guide

Audio Production Order

<?xml version="1.0"?>
<IDOCTYPE ProductionOrder SYSTEM *‘c:\rimage\xmI\ProductionOrder_1.14_dtd">

<ProductionOrder Copies="1" Orderld="Index Test" Clientld="POF-XML"
Priority="Normal" Originator="POF-XML">

<Media Size="120mm" Type="CDR"/>
<Target Cluster="DefaultProductionCluster'/>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A01"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A02"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A03"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A04">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A05"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A06"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A07"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A08"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>

64 110700_L

Appendix B — Sample XML Documents 8,%

<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A09"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A10"">
<Audio/> </WriteTrack> </Record>
</Action>
<Action>
<Record>
<Fixate Type="SAQ0" Final="true"/> </Record>
</Action>
</ProductionOrder>

Blue Book Production Order

<?xml version="1.0"?>
<IDOCTYPE ProductionOrder SYSTEM *‘c:\rimage\xmI\ProductionOrder_1.14_dtd">

<ProductionOrder Copies="1" Orderld="Blue Book" Clientld="POF-XML"
Priority="Normal" Originator="POF-XML">

<Media Size="120mm" Type="CDR"/>
<Target Cluster="DefaultProductionCluster'/>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.A01"">
<Audio/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.A02"">
<Audio/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.A03"">
<Audio/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.A04"">
<Audio/>
</WriteTrack>
</Record>

110700_L 65

&(Rimage APl Programming Guide

</Action>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.A05"">
<Audio/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="false"/>
</Record>
</Action>
<Action>
<Record>
<WriteTrack Filename="F:\Images\WS010012.D10"">
<Data Type="Model"/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="true"/>
</Record>
</Action>
<Action>
<Label Filename="C:\Rimage\Labels\SAMPLE.BTW"'>
<BTW SaveAfterRendering="default"/>
</Label>
</Action>
</ProductionOrder>

Mode 1 Production Order

<?xml version="1.0"?>
<IDOCTYPE ProductionOrder SYSTEM *‘c:\rimage\xmI\ProductionOrder_1.14_dtd">

<ProductionOrder Copies="1" Order1d="QD010005" Clientld="POF-XML""
Priority="Normal" Originator="QD01"">

<Media Size="120mm" Type="CDR"/>
<Target Cluster="DefaultProductionCluster'/>
<Action>
<Record>
<WriteTrack Filename="C:\Rimage\CD-R_Images\QD010005. IMG">
<Data Type="Model"/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="true"/>

66 110700_L

Appendix B — Sample XML Documents 8,%

</Record>

</Action>

<Action>
<Label Filename=""C:\Rimage\Temp\QD010005.BTW"">

<BTW SaveAfterRendering="false'"/>

</Label>

</Action>

</ProductionOrder>

Print Only Production Order

<?xml version="1.0"?>
<IDOCTYPE ProductionOrder SYSTEM ""C:\Rimage\XML\ProductionOrder_1.14._dtd">

<ProductionOrder Copies="10" Orderld="Print-Only" Clientld="POF-XML"
Priority="Normal" Originator="POF-XML">

<Media Size="120mm" Type="CDR"/>
<Target Cluster="DefaultProductionCluster'/>
<Action>

<Label Filename=""C:\Rimage\Labels\Barcode.btw">

<BTW Merge_Filename=""C:\Rimage\Labels\Barcode.txt"
SaveAfterRendering="default'/>

</Label>
</Action>
</ProductionOrder>

Data Disc Production Order

Below is a Production Order of 1 copy of OrderID "Record Data Disc" from ClientID "POF-XML" with Normal
Priority, Originated from "db" on 120mm CDR Media Size targeted for "Dave's" Cluster (RecordDataDisc.xml).
<?xml version="1.0" ?>

<I-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Jeff Schierman (Rimage
Corp.) -—>
<IDOCTYPE ProductionOrder SYSTEM *‘c:\rimage\xmI\ProductionOrder_1.14_dtd">

<ProductionOrder Copies="1" Orderld="Record Data Disc'" Clientld="POF-XML"
Priority="Normal" Originator="db">

<Media Size="120mm" Type="CDR"/>
<Target Cluster="Dave"s"/>
<Action>
<Record>
<WriteTrack Filename="E:\Images\ClipArt.IMG">
<Data Type='"Model" MergeSessions="true"/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="true"/>
</Record>
</Action>
<Action>
<Label Filename=""C:\Rimage\Labels\CD Creator.btw'>
<BTW SaveAfterRendering="default"/>

110700_L 67

&(Rimage APl Programming Guide

</Label>
</Action>
</ProductionOrder>

Order Status Samples

XML Image Order status (dh_i01.xml) and Production Order status (dh_p01.xml) samples are provided below.

Image Order Status

<?xml version="1.0"?>
<IDOCTYPE ImageOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ImageOrderStatus_1.6.dtd">

<ImageOrderStatus Orderld="QD_DHASSELER_ENG-DHASSLER_0142"
Clientld="QD_DHASSELER_ENG-DHASSLER" Serverld="SWRASKINREST_ 1S01""
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST""
MessagingPort="4664" OriginalOrder=""">

<Status State="COMPLETED" CurrentStatus="Writing File 27 of 26"
PercentCompleted="100"/>

<Timestamps OrderRead="2006-10-19 16:45:00" OrderCompleted=""2006-10-19
16:45:09"/>

</ImageOrderStatus>

Production Order Status

<?xml version="1.0"?>
<IDOCTYPE ProductionOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrderStatus_1.10.dtd">

<ProductionOrderStatus Orderld=""QD_DHASSELER_ENG-DHASSLER_0142"
Clientld=""QD_DHASSELER_ENG-DHASSLER"™ Server ld="SWRASKINREST_PSO1"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost=""SWRASKINREST"
MessagingPort="4664" OriginalOrder=""" SimulatePrint=""true"
SimulateWrite=""true'">

<Status Stage="RECORDING" State="IN_PROCESS"™ CopiesCompleted="0"
CopiesRequested=""1" PercentCompleted="0"/>

<Timestamps OrderRead="2006-10-19 16:45:14"/>

<Device ldentifier="Recorder 1, Cache 1" IsStreaming="false"
CurrentState="LOADING" />

</ProductionOrderStatus>

Spanning XML Samples

Image Order

68

<?xml version="1.0"?>
<IDOCTYPE ImageOrder SYSTEM "\\SWRASKINREST\Rimage\XML\ImageOrder_1.11.DTD">

<ImageOrder Orderld="QD_DHASSELER ENG-DHASSLER 0143 1001"
Clientld="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
Originator="QD_DHASSELER_ENG-DHASSLER''>

<Target Server="ANY" Cluster="DefaultlmageCluster'/>
<Format>
<PCMACFormat 1S0="2"/>

<FormatOptions Zip="false" ForceDot="false" Versions="false"
ForceShort=""false"™ CaseSensitive="false" ForceUpperCase="false"
IgnoreBadFiles="false" AllowBootableCD="false" AllowMultipleFilePaths="true'"/>

</Format>

110700_L

Appendix B — Sample XML Documents 8,%

<Source>

<EditList EditListPath=""\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143.EDL"/>

</Source>

<Output CDXA="false" Size="80" Type="RimageHeader' Postgap=""false"
ImageF i le=""\\SWRASKINREST\Rimage\CD-R_Images\QD_DHASSELER_ENG-
DHASSLER_0143.1img" PowerSpan="true"/>

<Rulles CheckNames=""true" AllowDirExt="false" CheckLevels="false"/>
<VolumeName VolName="My Disc"/>

<PVDInfo GMTOffset="-24" PVDSystem=""" PVDAbstract=""" PVDPreparer="UNTITLED"
PVDCopyright=""" PVDPublisher=""" PVDVolumeSet=""" PVDApplication="""
PVDBibliography=""" PVDEffectiveDate=""00/00/00" PVDExpirationDate="00/00/00"/>

<Controls Overwrite="true" WaitForSpace="-1"/>
</ImageOrder>

Image Order Status
<?xml version="1.0"?>

<IDOCTYPE ImageOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ImageOrderStatus_1.6.dtd">

<ImageOrderStatus Orderld="QD_DHASSELER_ENG-DHASSLER_0143_1001"
Clientld=""QD_DHASSELER_ENG-DHASSLER"™ Serverld="SWRASKINREST_1S01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST""
MessagingPort="4664" OriginalOrder=""">

<Status State="IN_PROCESS"™ SpanVolume="1" CurrentStatus="Writing File 1 of
8" SpanVolumeName="\\SWRASKINREST\Rimage\CD-R_Images\QD_DHASSELER_ENG-
DHASSLER_0143001.img" CurrentOperation="Volume 1 of 2" PercentCompleted="5"
SpanTotalVolumes="2" SpanVolumePercent="5">

<VolumeNameListEntry VolumeName="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143001.img"/>

<VolumeNameListEntry VolumeName="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143002.img"/>

</Status>
<Timestamps OrderRead="2006-10-19 16:49:56"/>
</ImageOrderStatus>

Order Set
<?xml version="1.0"?>
<IDOCTYPE OrderSet SYSTEM ""\\SWRASKINREST\Rimage\XML\OrderSet_1.1.DTD"">

<OrderSet Clientld="QD_DHASSELER_ENG-DHASSLER"™ Priority="Normal"
OrderSetld=""QD_DHASSELER_ENG-DHASSLER_0143" Originator="QD_DHASSELER_ENG-
DHASSLER'" TargetServer="SWRASKINREST_PSO01"
TargetCluster="DefaultProductionCluster'>

<OrderReference Orderld="QD_DHASSELER_ENG-DHASSLER_0143_P002"/>
<OrderReference Orderld="QD_DHASSELER_ENG-DHASSLER_0143_P003"/>

<ProductionOrderSet Copies="1" MediaSize="120mm" MediaType=""CDR"
TargetLine="1" OrdersHavelLabels="false'" TargetOutputMailslot="0"/>

</0OrderSet>

Order Set Status

<IDOCTYPE OrderSetStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\OrderSetStatus_1.4_dtd">

<OrderSetStatus Clientld="QD_DHASSELER_ENG-DHASSLER"

Server 1d=""SWRASKINREST_PS01" OrderSetld="QD_DHASSELER_ENG-DHASSLER_0143""
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST""
MessagingPort="4664" OriginalOrderSet=""">

110700_L 69

&(Rimage APl Programming Guide

<Status Stage="BUSY" State="IN_PROCESS" PercentCompleted="0"/>

<Timestamps OrderRead="2006-10-19 16:50:40"/>

<OrderReference Orderld=""QD_DHASSELER_ENG-DHASSLER_0143_P002"/>

<OrderReference Orderld=""QD_DHASSELER_ENG-DHASSLER_0143_P003"/>

<ProductionOrderSetStatus CopiesCompleted="0" CopiesRequested="2"/>
</OrderSetStatus>

Production Orders

<?xml version="1.0"?>

<IDOCTYPE ProductionOrder SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrder_1.14_DTD">

<ProductionOrder Copies="1" Logonld="dhasseler' Orderld="QD_DHASSELER_ ENG-
DHASSLER_0143_P002'" Clientld="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
ImagerHost=""SWRASKINREST" Originator="QD_DHASSELER_ENG-DHASSLER"
ReferencedSet=""QD_DHASSELER_ENG-DHASSLER_0143" External Imager="true"
SimulatePrinting=""false" SimulateRecording="true">

<Media Size="120mm" Type="CDR"/>

<Target Line="1" Server="SWRASKINREST_PSO01"
Cluster="DefaultProductionCluster'/>

<InOut OutputMailslot="0"/>
<Action>
<Record>

<WriteTrack Filename="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143001.img">

<Data Type="Model" MergeSessions="false"/>
</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="true"/>
</Record>
</Action>
</ProductionOrder>

<?xml version="1.0"?>

<IDOCTYPE ProductionOrder SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrder_1.14_DTD">

<ProductionOrder Copies="1" Logonld="dhasseler' Orderld="QD_DHASSELER_ ENG-
DHASSLER_0143_P003" Clientld="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
ImagerHost=""SWRASKINREST" Originator="QD_DHASSELER_ENG-DHASSLER"
ReferencedSet=""QD_DHASSELER_ENG-DHASSLER_0143" External Imager="true"
SimulatePrinting=""false" SimulateRecording="true">

<Media Size="120mm" Type="CDR"/>

<Target Line="1" Server="SWRASKINREST_PSO01"
Cluster="DefaultProductionCluster'/>

<InOut OutputMailslot="0"/>
<Action>
<Record>

<WriteTrack Filename="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143002.img"">

<Data Type="Model" MergeSessions="false"/>

70 110700_L

Appendix B — Sample XML Documents &

</WriteTrack>
</Record>
</Action>
<Action>
<Record>
<Fixate Type="SA0" Final="true"/>
</Record>
</Action>
</ProductionOrder>

Production Order Statuses

<?xml version="1.0"?>

<IDOCTYPE ProductionOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrderStatus_1.10.dtd">

<ProductionOrderStatus Order1d="QD_DHASSELER_ENG-DHASSLER_0143 P002"
Clientld=""QD_DHASSELER_ENG-DHASSLER"™ Serverld="SWRASKINREST_PSO01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost=""SWRASKINREST""
MessagingPort="4664" OriginalOrder="" SimulatePrint="true"
SimulateWrite=""true">

<Status Stage="RECORDING" State="IN_PROCESS" CopiesCompleted="0"
CopiesRequested="1" PercentCompleted="0"/>

<Timestamps OrderRead="2006-10-19 16:50:44"/>

<Device ldentifier="Recorder 1, Cache 1" IsStreaming=""false" PercentDone="0"
CurrentState=""RECORDING" />

</ProductionOrderStatus>
Server Configuration Samples

Production Server Configuration
<IDOCTYPE ProductionServerConfiguration SYSTEM
""C:\Rimage\XML\ProductionServerConfiguration_1.9.dtd">
<ProductionServerConfiguration>

<ServeriInfo ID="RIMAGE-4WEHMIR2_PS01" Cluster="DefaultProductionCluster"
Hostname=""RIMAGE-4WEHMIR2" IsService=""true" OSVersion="Windows XP Embedded"
SystemFolder="C:\Rimage" IsPasswordSet="false" SoftwareVersion="7.3.23.0"/>

<Transporter Type="Rimage DLN5200" Offline="false" InquiryString="Autoloader
1, COM1: DESKTOP 2 6.022E SN-U049536 ''>

<TransporterCapabilities MediaSize="120mm" MediaType=""CDR"
PerfectPrint="false"/>

<Bin Level="86" Usage=""Input"/>
<Bin Level="0" Usage="Output_Reject"/>
<Mailslot Level="20" Usage="Output’ NumberOfSlots="5"/>

<Recorder Offline="false" DiscCount="735" InquiryString="Recorder 1,
Drive E: PLEXTOR CD-R PREMIUM 1.02 SN-0186554'>

<RecorderCapabilities CanRecordCD-R="true" CanDestroyCD-R="true"
CanRecordDVD-R=""false" CanDestroyDVD-R="false"™ CanRecordPocketCD-R=""true"
MaxCDRecordingSpeed="52" CanDestroyPocketCD-R=""true"/>

<Cache InquiryString="d:\Cache0"/>
<Cache InquiryString="c:\Cache0"/>
</Recorder>

<Recorder Offline="false" DiscCount="726" InquiryString="Recorder 2,
Drive F: PLEXTOR CD-R PREMIUM 1.02 SN-0186553'">

110700_L 71

&(Rimage APl Programming Guide

<RecorderCapabilities CanRecordCD-R="true" CanDestroyCD-R="true"
CanRecordDVD-R="false" CanDestroyDVD-R=""false" CanRecordPocketCD-R=""true"
MaxCDRecordingSpeed="52" CanDestroyPocketCD-R=""true"/>

<Cache InquiryString="d:\Cachel"/>
<Cache InquiryString="c:\Cachel"/>
</Recorder>

<Printer Type="Everest-11" Ribbon="Color" Offline="false" DiscCount="0"
InquiryString="Printer - USBPRINT-O, COM1: EVEREST V1.06 SN- E012002"/>

</Transporter>

<Transporter Type="Manual"™ Offline="false" InquiryString="Loader 2, MANUAL
LOADER™>

<TransporterCapabilities MediaSize="ANY" MediaType="BOTH"
PerfectPrint="false"/>

</Transporter>
</ProductionServerConfiguration>

Imaging Server Configuration

<IDOCTYPE ImageServerConfiguration SYSTEM
"C:\Rimage\XML\ImageServerConfiguration_1.4_dtd">

<ImageServerConfiguration>

<ServeriInfo ID="RIMAGE-4WEHMIR2_1S01" Cluster="DefaultlmageCluster"
Hostname="RIMAGE-4WEHMIR2" IsService="true" OSVersion="Windows XP Professional"
Description="Rimage Imaging Server" SupportsSCP="true"
SystemFolder="C:\Rimage\" IsPasswordSet="false" SoftwareVersion="7.3.25.0"/>

<Options Overwrite="true"/>
</ImageServerConfiguration>

Server Dialog Samples

Alert Dialog

<IDOCTYPE AlertDialog SYSTEM "C:\Rimage\XML\AlertDialog_1.6.dtd">

<AlertDialog 1D="190448" Title="Alert" Message="Transporter Clear?"
Server 1d="RIMAGE-4WEHMIR2_PS01"*>

<Type>
<OneButton Text="0K"/>
</Type>
</AlertDialog>

Error Dialog

<IDOCTYPE ErrorDialog SYSTEM ""\\softwarelO\Rimage\XML\ErrorDialog_1.4.dtd">

<ErrorDialog 1D="530004" Title="TRANSPORTER ERROR!" Device="Autoloader 1, COM2"
Message="Error gripping disc.

Center disc in open drawer manually to retry Transporter Sense Code = 8 (medium
not present)" Serverld="softwarelO_PSO0l1" ErrorCode="140">

<Buttons>
<Top Text="Retry"/>
<Bottom Text="Disable Transporter'/>
</Buttons>
</ErrorDialog>

72 110700_L

Appendix B — Sample XML Documents 8,&

Server Request / Reply Samples

GetServerStatus Request
<?xml version="1.0"?>

<IDOCTYPE ProductionServerRequest SYSTEM
c:\Rimage\XML\ProductionServerRequest_1.11.dtd">

<ProductionServerRequest Serverld="softwarel0_PS01" Clientld="softwarelO_RSM" >
<GetServerStatus GetAutoloaderStatus="true' />
</ProductionServerRequest>

GetServerStatus Reply
<?xml version="1.0"?>

<IDOCTYPE ProductionServerReply SYSTEM
c:\Rimage\XML\ProductionServerReply_1.11.dtd">

<ProductionServerReply Clientld="softwarelO_RSM" Serverld="softwarel0O_PSO01"
Automation="Running" CommandState="COMPLETED" ReplyTimestamp=""2004-05-06
08:25:01" CommandErrorCode="0">

<ServerStatus>

<ServerliInfo Cluster="DefaultProductionCluster" Hostname="softwarel0"
IsService="false" Description="Dave's Production &Serverl"
PasswordSet="false" SystemFolder="\\softwarelO\Rimage" MessagingPort="4664"
SoftwareVersion="6.4.26.0"/>

<ProductionCount CopiesProduced="0" CopiesRejected="2"/>
<AutoloaderStatus Offline="true" LoaderNumber="1"/>
<AutoloaderStatus Offline="false" LoaderNumber="2">
<Recorder Number="1" Offline=""false"/>
</AutoloaderStatus>
</ServerStatus>
</ProductionServerReply>

SetParameter Request
<?xml version="1.0"?>

<IDOCTYPE ProductionServerRequest SYSTEM
c:\Rimage\XML\ProductionServerRequest_1.11.dtd">

<ProductionServerRequest Serverld="softwarel0_PS01" Clientld="softwarelO_RSM" >
<SetParameter >
<Setting>
<Recording>
<MaxRecordingSpeed Value="Max" />
</Recording>
</Setting>
<Setting>
<Printing>
<SimulatePrinting Value="true" />
</Printing>
</Setting>
</SetParameter>
</ProductionServerRequest>

110700_L 73

&(Rimage APl Programming Guide

SetParameter Reply

<?xml version="1.0"?>

<IDOCTYPE ProductionServerReply SYSTEM
c:\Rimage\XML\ProductionServerReply_1.11.dtd">

<ProductionServerReply Clientld="softwarelO_RSM" Serverld="softwarel0O_PSO01"
Automation="Running" CommandState="COMPLETED" ReplyTimestamp="2004-05-06
08:36:02" CommandErrorCode="0">

<AckOnly/>
</ProductionServerReply>

74 110700_L

Appendix C — Server Status and Control Password Encryption 8,&

Appendix C — Server Status and Control Password
Encryption

Encryption Method

The encryption method is designed to work only with Unicode. Existing servers and clients that use MBCS
need to convert to and from Unicode for this algorithm to work. Windows library calls are available for
converting between MBCS and Unicode. Clients already using Unicode will find the algorithm simple to
implement. The following steps include the MBCS to/from Unicode operations.

The following steps are performed to encrypt a password for transmission to a server.

1. Get the Unicode password. If this is in MBCS in a Windows client or server it must first be translated to
Unicode.

2. Encrypt this using the Rimage encryption algorithm that treats the array as a stream of bytes. Sample
code follows later in this document.

3. Encode the resulting string of bytes using the well-known Base64 standard. This translates the stream of
bytes into a stream of ASCII characters. Every 6 bits are changed to one of the characters in the set: [A-Za-
z0-9+/]. This results in 4 characters from every 3 bytes and is also known as 3-4 encoding. These
characters have the important property that they are represented in all versions of ISO 646, including US-
ASCII. The advantage of this is that this stream of characters is guaranteed to pass through any kind of
transmission system with no damage. It can be freely translated between Unicode, UTF, etc and still come
out correct.

When a server receives the password, the following steps are taken.
1. Decode the Base64 to get the byte stream back.

2. Decrypt this byte stream using the Rimage encryption algorithm. Sample code for the algorithm follows
later in this document. The byte stream is now the original Unicode password. On any server or client
requiring MBCS this string can be translated using Windows library calls.

- Note:
Byte swapping may be necessary in some cases depending on the language and hardware used.

This method allows password support in Unicode so that all languages will work.

Rimage Core Encryption Algorithm

The new core encryption algorithm is similar to the old one, with the exception that no character wrapping is
performed. In other words, each byte is simple incremented or decremented as necessary and overflow is not
considered.

This is the pseudo-code for encryption. Start with a byte array (really the Unicode bytes) and a code number
from 1 to 20. Note that the code number is restricted in the range 1 to 20.
For first byte to last byte in array
currentbyte = currentbyte + codenum
codenum = codenum + 1
if (codenum > 20)
codenum = 1

Here is the pseudo-code for decryption. As before, start with a byte array and a code number from 1 to 20.

For first byte to last byte in array
currentbyte = currentbyte - codenum
codenum = codenum + 1

110700_L 75

&(Rimage APl Programming Guide

it (codenum > 20)
codenum = 1

Password Encoding Samples Using C++

This code implements the encode, decode, and core encryption algorithms in C++ for Windows. This code also
includes the MBCS translations, which are not necessary for a Unicode service or client. The Base64 routines
are part of the Microsoft VC++ library, but could easily be coded in almost any programming language.

The encryption/decryption algorithm is implemented using recursion instead of a loop. If passwords were
thousands of characters long this might be better coded using a loop.

Encoding and Decoding a MBCS String

// Encode an MBCS string
// First change it to Unicode
CString Encode(LPCSTR txt, int code)
{
CString cs;
wchar_t *wbuf;
int size = strien(txt);
// get the size we need
size = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, txt, size, NULL, 0);
// allocate a buffer
wbuf = new wchar_t[size];
// change to Unicode
size = ::MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, txt, size, wbuf, size);
// set to byte count
size *= sizeof wchar_t;
// encrypt here
Crypt((BYTE*)wbuf, code, true, size);
// figure out how big we need a buffer for base64
int b64size = Base64EncodeGetRequiredLength(size);
// translate
Base64Encode ((BYTE*)wbuf, size, cs.GetBuffer(b64size), &b64size);
cs.ReleaseBuffer(b64size);
// free the buffer
delete []Jwbuf;
return cs;
}
// decode a base 64 string into MBCS
// change input to bytes
// decrypt it
// change it to MBCS
CString Decode(LPCSTR b64txt, int code)
{
CString cs;
BYTE *buf;
// figure out the buffer size we need
int size = Base64DecodeGetRequiredLength(strlen(b64txt));
// get a buffer

76 110700_L

Appendix C — Server Status and Control Password Encryption 8,&

buf = new BYTE[size];

// translate

Base64Decode(b64txt, strlen(b64txt), buf, &size);
// decrypt here

Crypt(buf, code, false, size);

// get the MBCS length

int msize = ::WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK, (LPCWSTR)buf,
size/(sizeof wchar_t), NULL, O, NULL, NULL);

// translate the string

::WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK, (LPCWSTR)buf, size/(sizeof
wchar_t), cs.GetBuffer(msize), msize, NULL, NULL);

cs.ReleaseBuffer(msize);
// free the buffer
delete []buf;
return cs;
}
/*
encrypt or decrypt a byte array
similar to old Rimage encryption, except the values are not limited
*/
void Crypt(BYTE* pwd, int dnum, bool encode, int size)

{

// see if done or no encoding needed

if (dnum==0 || size==0)

return;

// modify the value

*pwd += encode ? dnum:-dnum;

// handle the next character

Crypt(pwd+1, (dnum%20)+1, encode, size-1);
}

Encoding and Decoding a Unicode String
void Crypt(BYTE* pwd, int dnum, bool encode, Int size)

{

// see if done or no encoding needed

if (dnum==0 || size==0)

return;

// modify the value

*pwd += encode ? dnum:-dnum;

// handle the next character

Crypt(pwd+1, (dnum%20)+1, encode, size-1);
}

//// _UNICODE should be defined
// Encode an Unicode string

// _UNICODE should be defined
// Encode an Unicode string

CString Encode (const wchar_t *csTxt , int code)

110700_L 77

&(Rimage APl Programming Guide

78

}
1/

//
//
//
//

CString cs;
wchar_t *wbuf;
int size = wcslen(csTxt);

// allocate a buffer

wbuf = new wchar_t[size+1];

// Copy the Unicode characters

wescpy (wbuf, csTxt);

// set to byte count

size *= sizeof wchar_t;

// encrypt here

Crypt((BYTE*)wbuf, code, true, size);

// fTigure out how big we need a buffer for base64

int b64size = Base64EncodeGetRequiredLength(size);

// translate
char *destBuf;
destBuf = new char[b64size];

Base64Encode((BYTE*)wbuf, size, destBuf, &b64size);

// Convert to CString

_TCHAR *tsEncoded = cs.GetBuffer(b64size + 1);
for (int i=0; 1 < b64size; i++)

tsEncoded[i] destBuf[i];

tsEncoded[i] 0;

cs.ReleaseBuffer(b64size+l);
// free the buffers

delete []Jwbuf;

delete []destBuf;

return cs;

_UNICODE should be defined

decode a UNICODE base64 string
change input to 8-bit characters
decrypt input to bytes

change bytes to UNICODE string

CString Decode(const wchar_t *csB64txt, int code)

{

CString cs;

BYTE *buf;

int lenln = wcslen(csB64txt);

// Figure out the buffer size we need

int size = Base64DecodeGetRequiredLength(lenln);
// get a buffer

buf = new BYTE[size];

// Convert string to 8 bit characters
char *sourceBuf;
sourceBuf = new char[lenln + 1];

110700_L

Appendix C — Server Status and Control Password Encryption 8,&

for (int i=0; 1 < size; i++)

sourceBuf[i] = static_cast<char>(csB64txt[i]);
sourceBuf[i] = 0;

// translate

Base64Decode(sourceBuf, lenln, buf, &size);
// decrypt here

Crypt(buf, code, false, size);

wchar_t *tsDecoded = (wchar_t *)buf;

int usize = size/sizeof(wchar_t);

_TCHAR *tsBuf = cs.GetBuffer (usize + 1);

//Copy the decoded bytes into the CString
for (i=0; 1 < usize; i++)

tsBuf[i] = tsDecoded[i];
tsBuf[i] = 0;

cs.ReleaseBuffer(usize + 1);
// free the buffers
delete []buf;

delete []sourceBuf;
return cs;

110700_L 79

Appendix D — Error Codes 8,%

Appendix D — Error Codes

For a complete list of current error codes, visit the FAQs at www.rimage.com/developers.html.

110700_L 81

http://www.rimage.com/developers.html�

	Important Information
	Support Information
	Learn More Online

	Introduction
	Overview

	Client API Design
	Client API Use of XML
	XML Encoding Format for Production Server and Imaging Server
	Rimage DTDs
	DTD Location
	DTD Versions

	Client ID and Order ID Uniqueness Rules
	The ClientID and OrderID uniqueness rules:

	Client API Programming Class Definitions
	System-Related Operations Group
	Server-Related Operations Group
	Order-Related Operations Group

	System Management
	Connect to the System
	SystemManager.Disconnect()
	Sample Code
	Start/End Session using .NET with C#
	Start/End Session using Java
	Start/End Session using C++
	Start/End Session using C
	Start/End Session using VB 6

	Listen for System Events
	SystemListener.onSystemStatus()
	SystemListener.onSystemException()
	SystemListener.onClusterCreated()
	SystemManager.onClusterDeleted()
	SystemManager.removeSystemListener()
	Sample Code
	Listen for System Events using .NET with C#
	Listen for System Events using Java
	Listen for System Events using C++
	Listen for System Events using C
	Listen for System Events using VB 6

	Server Management
	Listening for Server Events
	Sample Code
	Listen for Server Events using .NET with C#
	Listen for Server Events using Java
	Listen for Server Events using C++
	Listen for Server Events using C
	Listen for Server Events using VB 6

	Synchronous Server Methods
	Sample Code
	Server Methods using .NET with C#
	Server Methods using Java
	Server Methods using C++
	Server Methods using C
	Server Methods using VB 6

	Order Management
	Submit Orders
	Order Management Methods
	OrderDescription Parameter
	XMLOrder Parameter
	OrderStatusListener

	OrderDescription
	OrderDescription Object as a Return Value
	Cancel an Order in Process
	Recover Orders
	OrderDescription Base Class
	ImageOrderDescription Sub Class
	ProductionOrderDescription Sub Class

	Streaming
	Changes to ImageOrder
	Changes to ProductionOrder

	Spanning
	Process Flow of a Spanned Disc Set
	Changes to ImageOrder
	Interpreting ImageOrderStatus
	OrderSet (New)
	Changes to ProductionOrder

	Order Management Sample Code
	Order Management using .NET with C#
	Order Management using Java
	Order Management using C++
	Order Management using C
	Order Management using VB 6

	Server Status and Control Protocol
	Server Command Synchronization
	Password Protection on Commands
	Production Server Commands
	Command Summary
	Command Reply
	Command Details

	Imaging Server Commands
	Command Summary
	Command Reply
	Command Details

	Deployment
	Java Deployment
	Build Information
	Required Files

	.NET Deployment
	Build Information
	Required .NET Assembly Files

	C / C++ / VB 6 Deployment
	Build Information
	Required Linker Options
	Required Files and Folders

	Required DLL Files (Unicode)
	Required DLL Files (Non-Unicode)
	Microsoft visual C++ 2008 SP1 Redistributable Pack is Required.
	Required LIB Files (Unicode)
	Required LIB Files (Non-Unicode)
	Required Include Directories
	Required #include Statements
	Optional files
	64 bit deployment
	Appendix A – Sample Source Code Projects
	Appendix B – Sample XML Documents
	Image Order Samples
	ISO L2 with Editlist Image Order
	ISO L2 from Parent Folder Image Order
	RockRidge Image Order

	Production Order Samples
	Audio Production Order
	Blue Book Production Order
	Mode 1 Production Order
	Print Only Production Order
	Data Disc Production Order

	Order Status Samples
	Image Order Status
	Production Order Status

	Spanning XML Samples
	Image Order
	Image Order Status
	Order Set
	Order Set Status
	Production Orders
	Production Order Statuses

	Server Configuration Samples
	Production Server Configuration
	Imaging Server Configuration

	Server Dialog Samples
	Alert Dialog
	Error Dialog

	Server Request / Reply Samples
	GetServerStatus Request
	GetServerStatus Reply
	SetParameter Request
	SetParameter Reply

	Appendix C – Server Status and Control Password Encryption
	Encryption Method
	Rimage Core Encryption Algorithm
	Password Encoding Samples Using C++
	Encoding and Decoding a MBCS String
	Encoding and Decoding a Unicode String

	Appendix D – Error Codes

